1.说明国际油价下跌对我国经济社会发转会带来哪些影响

2.非常规油气资源评价方法

3.决策分析是油气资源评价的必然延伸

4.中国石油进口量与国际石油市场价格变化趋势分析

5.油气资源供应量变化趋势预测

6.浙江石化价值分析化工成长龙头电话会议之四

7.油气储运知识

油气基金最新净值_油气基金价值分析

康 一 孑

油气资源是近几年来是国内关注的焦点,不少媒体以至中央电视台节目中,都提出了对我国石油天然气资源不足而担心,认为探明的储量难于满足需求,并具体举出我国石油、天然气的探明可采储量为 24. 3 亿吨、2. 2 万亿立方米 ( 2003年底资料) 以上可采储量为剩余可采储量,是个动态数字,用发展规律来分析,我国从上世纪九十年代中的十年来,每年的石油探明可采储量都是 24 亿吨左右,产量由 1. 5 亿吨逐步升至 1. 68 亿吨,而天然气在 1995 年的探明可采储量为 0. 7万亿立方米,到 2003 年翻了两番,年产量从 180 亿立方米升到 255 亿立方米,增长的潜力较大。纵观世界和一些主要产油国也有类似的情况,例如美国石油可采资源量较大 ( 为 350 亿吨) ,在 1975 年达到产油高峰期,年产原油 5. 3 亿吨,以后就逐步下降,从 20 世纪 90 年代初到 21 世纪初,产油量为 3 亿吨左右,这 10年间,其石油探明可采储量 ( 即剩余可采储量) 也都在 30 亿吨左右。世界 1978年第一次石油危机时,年产量达 32 亿吨,当年石油剩余可采储量仅 500 亿吨左右,但一直到 1990 年左右,而石油探明可采储量则上升到 1000 亿吨以上,到2000 年则为 1400 亿吨左右,因此采油量在达到 45 亿吨时,储采比也在 30 以上。

石油和天然气是化石能源,自上世纪初开始应用,到 40 年代起逐步代替煤,成为主要能源,到七八十年代在能源消费结构中达到 60% 以上,为工业化发展起了重要作用。化石能源存在于地球历史 5 亿 ~6 亿年到几百万年间的沉积地层中,是不可再生的,蕴藏量有限度,在今后一定时间内总要枯竭。因此,在能源内不能只用石油,要有替代能源和新能源,并应早做准备。但是,世界上在本世纪中,我国在近 20 年内,石油天然气仍然是重要能源。近几年石油价格的猛烈上涨,是有其复杂因素造成,并不是油气资源短缺,这是许多经济学家所承认的。

我国从 20 世纪 50 年代起,在油气地质勘探中不断有所发现,产、储量在世界上占有一定地位,近 10 多年来,石油产量在沙特、伊朗、俄罗斯、美国之下,是在年产 1. 5 亿吨以上的国家中,占据在第五至第九之间的位置。我国 50 多年中,在石油天然气地质勘探中是有一些发展规律需要归纳总结。

一、地质勘探工作上的地质理论、方向、方法和勘探程序

20 世纪 50 年代初,油气产、储量都很低,且受陆相不能生油,勘探力量非常薄弱的基础上起步。首先在我国是以陆相地层为主的条件下,提出陆相地层也能生油的理论鼓舞下,建立了在陆相地层内找油的信心并加以实现,成为世界一大创举。其次,是在中央政府的倡导下,以区域勘探为先驱,统一三大部门 ( 石油部门、地质部和中科院) 的力量,甩开东部新区 ( 松辽和渤海湾盆地) 的战略部署,在较快的时间内打开局面,建立起我国石油工业基地。但在具体工作上,地质勘探走了不少弯路,油田和储量不是那么容易找到和发现的,如区域勘探上的 “区域展开和重点突破”,钻探井中的五位一体 ( 地质、钻井、地震、测井和实验室) ,钻探井中资料的取全取准,钻探中失败教训的总结等。20 世纪 50 年代曾钻探了松辽、渤海湾、鄂尔多斯、柴达木、四川、塔里木等盆地,结果只有前两个成功并获得大油田和较多储量,其他 4 个盆地虽然有小油田和少储量,但基本上是失败的,这是多因素所造成的,将在后面阐述。目前总结的是,只靠单一因素是找不到油气的,例如柴达木、四川、塔里木盆地构造明显又多,但很多钻探失败,鄂尔多斯盆地基本为单斜除个别地域外没有构造,但沉积古地理在一些地方形成三角洲,又找到大型储量上几亿吨的油田。总之,要找到油田和储量是要下功夫的,不论是过去和将来,不能认为: 简单和容易找的油田和储量已找得差不多了,今后都是很难找的了。

据统计,我国中、新生界以陆相为主,石油主要蕴藏于白垩系、侏罗系和三叠系中,渤海湾盆地及沿海大陆架主要是第三系,海相石炭系和奥陶系以塔里木盆地为主,此外四川的海相石炭系、二叠系和三叠系蕴藏有大量天然气,塔里木的陆相的白垩系、第三系,鄂尔多斯的海相奥陶系和海陆交互相的石炭系—二叠系都蕴藏了大量天然气。

二、科技进步使我们找到更多油气田

地质、地震、钻井、测井、测试等各方面技术的发展,有力地推动了油气勘探工作的发展,取得了丰硕成果。特别地震技术的提高,从二维、三维到各种计算机的应用,使人们对地下深层构造以及岩相古地理都有所认识,测井的成像技术对识别油气层的能力提高,钻井在高陡构造和地形复杂地区能定靶钻井,完井试油的酸化压裂技术改变油层产油能力等,都在寻找油气田提高储量上发挥了重要作用。而这些在过去根本无法发现油气田。几个明显的例子: 例一: 准噶尔、塔里木盆地中央的沙漠地带,自 20 世纪 80 年代后进行了地震大剖面工作,才了解了地质构造,并进行钻井,发现了一系列油气田,这在过去是不可能的。例二,塔里木盆地北部库车坳陷早在 50 年代钻井就发现了一个依希克里克小油田,后因构造复杂,地面地下不一致,钻井也过不了关,几十年都解决不了,直到 90年代通过地震工作才将地下构造搞清,钻井也解决了定向钻井的问题,才发现克拉 2 号大气田,成为我国丰度最大产量高的最大气田。例三: 四川是我国天然气发现最早的盆地,但川东地区构造陡,地面地下不一致,找不到地下构造高点,只发现了一些小气田,到 80 年代解决了地震搞清地下构造高点、钻井定向打井的技术,并明确了石炭系储层良好的高产气田,一些构造带成串的气田形成上千亿立方米的储量,改变了四川产气的面貌。例四: 鄂尔多斯盆地三叠系大面积上亿吨油田的发现,主要得益于地层岩相古地理的研究。就在安塞油田有储量而产量低、经济价值不高的时候,采取了井下增产措施———酸化、压裂,并获得成功,使产量提至经济效益以上,油田活了,整个鄂尔多斯盆地上升至年产原油千万吨以上,改变了整个盆地的评价。

80 年代还有一个重要措施,就是科学探索井的拟定和实施,这也是科学研究探索区域勘探的一个办法,在 10 口科探井成功了两口,这就是鄂尔多斯盆地的陕参 1 井和吐哈盆地的台参 1 井,解决了这两个盆地的出气和出油,成为打开一个地区新局面的重大发现,这种发现钻井少而意义大,应引起极大的重视。

三、大的沉积盆地与油气储量、产量的关系密切

石油天然气均分布于各沉积盆地内,据专家统计,世界共有含油气盆地 400多个,大型盆地 ( 一般大于 10 万平方千米) 具有高储量高产量 ( 20 世纪末的资料) ,年产是上亿吨 ( 探明可采储量在 50 亿吨以上) 的盆地有 8 个,年产量上5000 万吨 ( 探明可采储量 20 亿吨以上) 的盆地 28 个,其中我国有 2 个 ( 松辽、渤海湾盆地) 。我国共 400 多个沉积盆地,有油气远景的约 120 个,其中有油气田的 25 个,大型沉积盆地陆上有 9 个 ( 8 个有油气田) 。陆上已有油气田的 8 个大型盆地,松辽、渤海湾两盆地在勘探前期 ( 5 ~15 年内) 就已探明可采储量 20亿吨,其他 4 个盆地则历经艰险,有的经过 40 年甚至 70 年以上的勘探才探明 5亿 ~10 亿吨可采储量 ( 包括天然气储量的油当量) 年采油量 ( 含天然气产量的油当量) 超过 1000 万吨。

鄂尔多斯盆地很具有代表性,从 1908 年开始勘探,到 1950 年只有延长、永坪两个小油田,年产油不足 1 万吨,20 世纪 50 ~ 70 年代在盆地四周及中心做过勘探工作,由于对沉积相进行了研究,才发现了侏罗系河流相的次生油藏,突破中型油田的产油关。80 年代经科学探索井钻探和三叠系沉积相研究分析,找到了奥陶系大气田和湖相三角洲的三叠系大油田,这时的探明可采储量石油达到 3 亿吨,天然气达到了 7000 亿立方米 ( 相当 7 亿吨油当量) ,石油气年产量 1500 万吨,天然气 50 亿立方米以上 ( 2005 年) 。

塔里木盆地是我国陆上最大的沉积盆地,面积 56 万平方千米,石油勘探工作是在1950 年中苏石油公司时开始的,由于中央是沙漠,开始只是在北部库车坳陷和南部西南坳陷进行,因为勘探条件复杂,几上几下,到 20 世纪 80 年代才扎扎实实地对盆地开展了区域勘探,首先在北部轮南地区发现三叠系和侏罗系油藏,又在奥陶系和石炭系见到油田,并在塔中隆起上探明中型石炭系砂岩油藏,但由于后期破坏,大部分构造不含油,使短期内找到大油田、高储量的希望落空。20 世纪末至本世纪初在库车坳陷探明克拉 2 大气田、塔北隆起探明塔河大油田 ( 奥陶系) ,才使在塔里木盆地能找到更多油、气田,更多油气储量成为现实,但塔里木还有很多空白地区和许多找油气的新领域等待我们去发现。

准噶尔盆地和四川盆地也是油气勘探的老区,50 年来也走了不少弯路,近20年又有新发现,油、气储量明显增加,老盆地焕发了青春。准噶尔盆地1955 年发现了西北缘克拉玛依大油田,探明地质储量 7 亿吨以上,是新中国成立后发现的第一个大油田。近 20 年全盆地处处开花,在盆地中部、东部、南部都有新发现,累计探明地质储量达 17 亿吨以上 ( 可采储量达 4 亿吨) ,年产量上千万吨。四川盆地主要产气,但在1958 年川中有三个构造喷出高产油流,开展了找油会战,由于是裂缝产油,石油勘探一直没有突破,而四川盆地在三叠系、二叠系中的裂缝天然气很发育,曾达到年产 60 亿立方米的规模,但由于储量不易计算,川气不能出川。1978 年后,石炭系砂岩气层及侏罗系、二叠系岩性气藏的发现,天然气地质储量达到 8000 亿立方米以上,探明剩余可采天然气储量在 3000 亿立方米以上,天然气年产量达 100 亿立方米以上。

四、油气资源潜力与能源战略

当今世界石油价格猛涨至 50 ~60 美元/桶或更高,国内油气需求上升速度大于油气产量上升速率,近年石油年进口量已超过 1 亿吨,地质勘探工作如何应对这种局面。首先还是要加强国内油气勘探,使国内油气储量、产量保持上升势头,我国石油天然气的常规资源量有潜力,石油产是量尚未达高峰年,天然气已探明可采储量高不足最终可采资源量的 25%,预测年产量在千亿立方米以上,我国是个人口大国,油气年消费量仍在上升,需要在世界石油市场上进口,但决不能像美国那样每年消费掉 8 亿吨以上石油 ( 自己生产 3 亿吨) ,天然气 6000 亿立方米以上 ( 自己生产 4000 亿立方米) ,占世界能源生产总量的 20%以上。

我国非常规油气资源也有一笔不小的数量,首先是石油,我们的稠油、油矿及低渗透油层潜力存在,如准噶尔、松辽、二连、渤海湾、四川等盆地早就有发现,但是由于开发成本高,技术不过关,没有开发,稠油在准噶尔盆地西北缘也开发了一部分,其经济价值甚至高于正常原油。油页岩早在新中国成立前就曾炼制,其数量 ( 储量) 甚为可观,当油气十分奇缺时,我们也应当考虑。非常规天然气在世界上及国内一直考虑的煤层气和可燃冰 ( 天然气水合物) 是很重要的接替物,美国早在 20 世纪 90 年代就年产煤层气 300 亿立方米以上,可燃冰更是数量巨大,在我国油气能源紧张的情况下,更应及早动手勘探开发。当然在我国目前情况下,节能降耗也是必须进行的,在我国人均 GDP 只有 1000 多美元的情况下,就发展了 4000 多万辆汽车 ( 其中私人小汽车占一半以上) ,年用掉原油 1. 3亿吨,相当我国年进口石油的全部,是值得考虑的。从全世界角度考虑,几十年内,化石能源不会短缺,但从目前开始,就应考虑一个问题, “今后只用石油这个能源吗?”世界在今后一个长时期后,肯定要用 “可再生能源”,可再生能源中的太阳能、风能、核能、生物能、氢能……将是今后的主要的。如我们在使用生物能、风能、太阳能、核能中已经获得一些结果。如何改变我们目前能源消费结构中,煤占 67. 7%,油气占 25. 3%,其他只占 7% 的现状,从现在起就要开始努力。

说明国际油价下跌对我国经济社会发转会带来哪些影响

(一)油气资源潜力评价方法

油气资源评价体系指计算或分析某一特定区域(小到圈闭,大到全球)地下油气富集量的过程,主要解决评价区内有无油气?有多少?空间分布状况?当前技术条件下能否采出?值不值得进行勘探和开发等一系列问题。就本质而言,资源评价是通过对已有各类资料、理论、认识、实践的综合分析,采用合理的评价方法和参数,对剩余资源量及其分布作出客观判断,为制定宏观的勘探规划部署和决策提供科学依据。

据不完全统计,目前国内外常用的石油资源评价方法有十多种,尽管油气资源评价的方法很多,理论基础也存在着差异,各自运用的对象也不尽相同,但大致可归纳为统计预测法、地质类比预测法、成因预测法和综合预测法等4大类。不同评价方法的技术路线和出发点不一样,表现出不同方面的优点和缺点,对资源评价方法的适用性研究不深入,必然使得远景资源量计算的可信度降低。以下对不同的资源评价方法的优、缺点及适用勘探阶段进行详细的剖析。

1.成因预测法

以“干酪根热降解理论”为基础的石油有机成因学说,为认识石油的成因来源、评价油气资源潜力提供了重要的理论依据,并在勘探上取得了极大的成功。因此成因法也是最早得到发展的资源评价方法。

成因法资源评价考虑了油气成藏的各个环节对资源量的贡献,评价过程中涉及的众多参数,包含了油气生成、运移、聚集、保存的全过程,并且这些参数的选取都与地质历史过程直接相关,具有明确的地质意义,该方法的成果图件有助于决策者了解评价地区油气地质演化的各个环节,目前已在盆地、区带以及圈闭等资源量计算评价中发挥着不可忽视的作用。成因法的理论设计是完备的,也代表着当今地质学研究的前沿,成因法资源评价适用于盆地勘探的各个阶段。

成因法的准确性和可靠性主要依赖于对生烃、排烃、运聚等主要石油地质问题的全面理解及关键参数的正确选取。但关键参数的选取由于很难建立有效的数学模型来确定,影响了其评价精度。其中,油气排、聚系数定量评价研究是最为薄弱环节。油气排、聚系数的确定是成因法资源评价的关键点和难点,它直接影响到对盆地总油气资源量的最终评价结果。油气资源评价的目的并不仅仅是为了获得一个具体的资源量,它实际上是对油气成藏的综合认识过程,成因法资源评价较其他方法能够为油气勘探部署决策提供更多有益信息。因此,成因法仍将是未来油气资源评价的重要方法。

2.统计法

统计法是利用统计学的原理和方法,根据勘探程度较高探区内油气田储量(产量)某种变化趋势或假设油气藏规模服从某种分布(包括对数正态分布、截断偏移帕雷托分布等),建立相关数学模型,进而预测未发现油气资源的一种油气资源评价方法。它能预测待发现经济油气藏的数量及规模,能够为经济评价和决策分析提供较为充分的信息。在已发现的油气储量的基础上构筑出发展规律的数学模型,对于烃源岩、有机质特征考虑较少,该方法目前国外利用较多。

统计法资源评价的优点是能够直接获得每一个评价单元的油气藏数量、规模的评价数据,评价结果直观,而且避开了成因法资源评价中所无法回避的一些关键参数的定量评价问题,国外的油气资源评价主要采用统计法。

统计法主要存在以下几个问题:①概率模型对评价单元的要求较为敏感,它要求评价单元具有相似的地质特征,将几个不同油水系统的油藏作为一个大规模的油藏处理或将同一油水系统的油藏作为多个油藏对待都会影响计算的准确度;②利用已发现的资源量预测未发现的资源量可靠程度还取决于对已发现资源量数理分布系数及油藏规模发现率的正确认识;③利用统计法计算资源量的另一个弱点是不能进一步指出资源量的具体位置所在,所得计算结果往往依赖于前期投入的工作量,计算结果较为保守;④其评价参数并没有明确的地质意义,而且数学模型中有关参数的确定受人为影响的因素较多。此外,数理统计预测法是计算区带(勘探目的层)资源量较为现实的方法,然而,在存在多套油源、多种油藏类型的情况下,如何科学地抽取统计样本,以使得资源量预测更接近地下实际,是有待探讨的重要问题。

统计法通常适用于成熟或较成熟勘探地区的中期和后期评价阶段,不能直接运用于早期的未勘探或未开发阶段,主要原因是受评价对象勘探成果资料的制约,同时也受经济技术和人为因素的影响。

3.类比法

类比法资源评价利用了低勘探程度区域的油气普查资料和高勘探程度区域的丰富资料,求取了烃排聚系数、储量密度系数、单生系数和单储系数等关键参数,进而计算出低勘探程度区域可能获得的油气聚集量,最终求出目标区域的总资源量。类比法资源评价结果的准确性主要取决于类比对象及类比参数的正确选取,对类比参数的取值通常是通过地质条件对比而筛选最佳类比对象并赋定相应的类比系数,即相似因子,相似因子的合理确定是油气资源评价的关键。确定相似因子需要考虑的地质因素有盆地规模、沉积岩厚度、油气成熟度、可探测深度范围内的岩石体积、盆地岩相的主要特征、沉积盖层的厚度、构造格局、生储盖岩层所占比例和含油岩系的地质时代等。同时,还应充分考虑盆地在时间上和空间上的有效组合,目的是可以通过类比参数选取计算资源量并同时评价计算结果的可靠性程度,也可以在此类比基础上分析评价对象的最有利和最不利石油地质条件估计资源量计算的最大和最小的概率分布,从而校验其他方法所作的资源量的估算。

类比法对盆地早期评价较为有效,但由于很难找到完全类似的类比盆地和区块,因此,评价结果误差较大。

4.体积法

体积法油气资源评价结果的准确性主要取决于有关体积和丰度参数的正确选取,美国USGS对北美75个高成熟勘探程度的盆地进行研究,计算出这些盆地中每立方千米沉积体的油气产量,并做出烃类产量的频率图。丰度系数有多种选取方法,比如多因素方法,在研究各种地质参数与储量密度相关性的基础上,对储量密度进行多元线性回归,求出不同资料程度情况下的储量密度,进行类比后选择使用。多种“体积”和“丰度”参数都是以其特定的方法取值;可将评价对象分深度、分层系、分区块、分网格,分别给予不同的丰度系数,用积分法由计算机实现求值。原则上讲,此方法仅适用于同一盆地类型,具相似的演化史和几何学特征、内部结构的地区,任意扩大应用范围会导致结果误差很大,并且此种方法仅为笼统的数据,只能用于那些未经勘探的新盆地的概略估算。

总体来说,在盆地的不同勘探阶段,油气资源评价方法和精度也不尽相同。根据不同资源评价适用性分析,体积法、类比法主要适用于勘探初期阶段,成因法适用于盆地勘探的各个阶段,而统计法主要适用于中高勘探程度阶段(表2-8),成因法与统计法是目前国内外资源评价使用较多的两大类主要方法。

表2-8 主要资源评价方法适用性对比表

但是,成因法和统计法各有其适用性和局限性,国外较多利用统计法,国内较多利用成因法,造成这一现象的原因与西方石油公司一直延续区块勘探开发矿权管理模式有关,每个石油公司只拥有单个和部分区块,它们资源评价的重点是区块,因而在客观上降低了对其他区域研究的积极性,由于他们在进行资源评价时没有从油气生成与聚集成藏的地质分析入手,无法对评价结果提供更充分的地质成因解释,影响了对勘探生产的指导和预测。美国地质调查局在2000年以后已经意识到这一点,Charpentier等(2000)指出:“使用无地质分析的统计法会产生误导”。我国一直采用成因法为主的资源评价方法,这是与我国长期坚持的定洼选带、从源入手的整体勘探策略相辅相成的,并在中、长期勘探潜力预测与整体效益把握上具有独到的优势,值得在国内勘探中继续坚持与发扬。鉴于研究区不同盆地均以盆地范围整体勘探为主,油气的生成、运移、聚集过程均在盆地/坳陷/凹陷内发生、发展和完成,因此,本次资源潜力评价是在对咸化环境烃源岩生、排烃效率及油气成藏规律的新认识的基础上,以成因法为主要手段重新评估东部老区主要凹陷的资源潜力。

(二)主要富烃凹陷资源潜力再认识

成因法资源潜力评价主要通过对盆地内烃源岩的生烃量、排烃(初次运移)量、吸附量、散失量等的估算,最终确定油气的聚集量,评价的科学性取决于对烃源岩生排烃机理、生排烃效率的认识以及油气运移聚集规律的认识程度及各定量参数的可靠性。近期在咸化湖相烃源岩的形成机制、生排烃机制、原始有机质丰度恢复、生排烃效率定量计算以及成藏贡献等方面取得了一系列进展,为研究区主要凹陷咸化环境烃源岩油气资源量再认识奠定了基础。

在对生排烃效率计算的基础上,结合化学动力学进行了生烃量计算。化学动力学方法的基本原理是将沉积有机质成烃(油、气)及油成气的过程视为热力作用下的化学反应过程,在烃源岩埋藏过程,随埋藏深度和温度的增加,干酪根大分子化合物依据键能的大小逐渐断裂,生成油气,其化学反应速度只与反应物浓度的一次平方成正比,可视为一级化学反应,服从阿伦尼乌斯方程,因此利用阿伦尼乌斯方程可进行生油量的计算(蒂索,1978),而有关反应进行的程度和产物组成及其与温度和时间的关系可由化学动力学方程来定量、动态描述。获得干酪根生油、生气等的相关的动力学参数后,根据不同沉积单元烃源岩的体积、沉积埋藏史及热史,通过计算机模拟来计算生烃量。

计算过程中,为力求精确,将烃源岩分布区在平面上均分为500m×500m的网格区,分别计算各网格区内目的烃源岩层的生烃量,然后累加求和即可得出各凹陷目的烃源岩层总的生烃量,各网格区的生烃量除以网格区的面积即为生烃强度。单一网格区内生烃量的具体计算公式如下:

Q生烃=S×H×TOC0×HI0×ρ×F (2-12)

其中:S为烃源岩面积,km2;H为烃源岩厚度,m;ρ为烃源岩密度,g/cm3;TOC0为烃源岩的原始有机碳含量,%;HI0为烃源岩的原始氢指数,mg/gTOC;F为有机质成烃转化率,%。

表2-9为应用该方法计算的东营凹陷各洼陷沙四段上亚段烃源岩面积、体积及生排油气量数据表,从表中可以看出,各洼陷单位面积生烃量差别较大,这主要取决于各洼陷的烃源岩厚度、烃源岩质量和演化程度。从单位体积生烃量来看,埋藏较深的利津和民丰洼陷具有较高的生烃强度,排烃效率较高,表现出热演化对其生、排烃效率的重要影响。

表2-9 东营凹陷分洼陷Es4上烃源岩生排烃量表(单位:油108t,气:1011m3)

表2-10为二轮资源评价、三轮资源评价及本次对济阳坳陷沙四上亚段咸化烃源岩评价中得到的生排烃量及资源量对比表。从表中可看出,三次评价的生排烃量差异较大,尤其是排烃量的差异最大,基本上是数量级的差异,这主要与对咸化湖泊环境富藻类和页理结构烃源岩地质认识,包括对烃源岩分布规律和生排烃效率等方面的认识逐渐深化有关。根据前文定量计算,主力生烃区间的(半)咸化—咸化环境优质烃源岩的生烃效率从以往的20%~40%提高到50%~70%,排烃效率从50%~70%提高到60%~90%。这种认识的改变对咸化环境烃源岩的资源潜力评价产生了重要影响。

表2-10 济阳坳陷二轮、三轮及本次资源评价沙四上亚段资源量对比表(单位:108t)

根据这一认识,结合东部半咸化-咸化盆地的沉积有机相、烃源岩发育和演化特征对东部老区7个主要凹陷的油气资源量进行了估算。从估算结果看(表2-11,图2-49),各凹陷资源评估结果都有较大增长,石油资源量的增长为11%~35%不等,总资源量增长了31.52×108t,增长比例达29.5%。其中东营和沾化凹陷资源量增加最大,分别为16.55×108t和9.13×108t,增加比例可达35%。

表2-11 东部老区7个主要凹陷三轮及本次石油资源量评价对比表(单位:108t)

图2-49 东部老区7个主要凹陷三轮及本次石油资源量评价对比图

油气资源量及油气资源丰度是评价含油气盆地的重要参数。龚再升(1997)提出“富生烃凹陷-富含油气系统”概念,指出富生烃凹陷油气资源丰度一般大于15×104t/km2。若凹陷的面积和其他参数具备形成大油气田或中小油气田的条件,则可形成富含油气系统。袁选俊等(2002)提出的分类,富油气凹陷的资源丰度大于20×104t/km2,资源规模在3×108t以上。如果采用资源丰度大于20×104t/km2为富烃凹陷的分类,根据本次油气资源评估结果,表2-12中所列东部老区8个凹陷中,东营、沾化、泌阳、东濮和车镇凹陷为富烃凹陷,油气资源丰度均在30×104t/km2以上(图2-50),这其中又以东营和沾化凹陷油气资源丰度最高,可达109.2×104t/km2和97.6×104t/km2;潜江和惠民凹陷为较富烃凹陷,油气资源丰度分别为18.7×104t/km2和17.2×104t/km2,均在15×104t/km2以上;高邮凹陷为中等生烃凹陷,油气资源丰度为9.2×104t/km2。

表2-12 不同凹陷石油资源量及资源丰度汇总表

图2-50 东部老区8个主要凹陷油气资源丰度对比图

(三)主要富烃凹陷剩余资源潜力分析

本次资源量计算结果表明(表2-13),东部老区8个主要发育咸化烃源岩的凹陷剩余资源量从三轮资源评价的.04×108t增加到97.51×108t,增加了33.47×108t。不同凹陷剩余油气资源量为1.43×108t~38.8×108t,增长量为0.42×108t~16.55×108t,增长比例18.4%~74.4%。不同凹陷剩余油气资源分布及其储存层位亦具有较大差异。

表2-13 东部老区7个主要凹陷三轮及本次剩余油气资源量评价对比表(单位:108t)

备注:已探明石油地质储量数据截至2009年年底。

1.济阳坳陷

济阳坳陷咸化烃源岩主要发育于东营、沾化和车镇凹陷,其中东营和沾化凹陷咸化烃源岩厚度大、埋藏深、分布广,总资源量和剩余资源量也是东部老区最高的。油源对比结果表明,已探明石油储量主要来源于(半)咸化环境下沉积的沙四上亚段和沙三下亚段烃源岩。根据资源评估和混源油定量评价结果(表2-14),东营凹陷源自沙四上亚段烃源岩石油资源量为31.16×108t,目前已探明18.51×108t,探明程度仅为59%,还有剩余石油资源12.65×108t;源自沙三下段烃源岩的石油资源量为12.65×108t,目前已探明6.51×108t,主要分布在利津洼陷,剩余油气资源还有6.14×108t,表明了东营凹陷源自咸化烃源岩的剩余石油资源还有较大的勘探空间;沾化凹陷各洼陷中,探明的沙四来源的石油储量主要集中在渤南、四扣、孤北地区,其中源自渤南洼陷沙四段源岩的石油探明储量比较高,渤南和四扣洼陷剩余石油资源分别为2.42×108t和2.34×108t,均具有较大勘探前景,孤北洼陷探明程度最低,仅为14%,剩余石油资源量最多,可达3.59×108t,源自沙三段源岩的石油资源探明程度较高为85.77%(表2-15),剩余1.44×108t,因此,源自沙四上亚段烃源岩的剩余资源应该是沾化凹陷下一步的勘探方向;车镇凹陷探明程度相对较低,源自沙四上亚段的石油资源仅探明了5.81%,剩余1.61×108t,虽然与东营凹陷和沾化凹陷各洼陷相比,郭局子及大王北洼陷总资源量偏少,但探明程度很低,不足10%,因而,也具有较好的勘探前景。

从已探明储量纵向上的分布来看,不同地区各层系之间的含油性差别较大(图2-51),东营凹陷含油层系以沙二段为主,其次是沙三段、沙四段;沾化凹陷以馆陶组为主,其次是沙三段、沙二段;车镇凹陷主要以沙二段为主,这主要受到湖盆沉积中心的迁移和储盖组合配置所决定。从已探明储量较高的东营、沾化凹陷油藏类型分布来看,都是构造油藏占比例最大,其次是岩性油藏、地层油藏(图2-52),分析历年油藏类型变化情况,近年来岩性、地层等隐蔽油藏探明储量比例呈上升趋势,说明东营、沾化凹陷经历了近40年的勘探,大、中型规模优质储量,大、中型构造及岩性油藏相继被发现之后,目前已逐步进入以寻找中、小型复杂隐蔽岩性及构造油藏为主的勘探阶段。近年来中浅层储量所占比例下降、中深层储量所占比例呈上升的趋势,说明随着勘探的进程,储量埋深越来越大是勘探的必然趋势。

表2-14 东营凹陷各洼陷资源量及探明储量对比表

表2-15 沾化、车镇地区各洼陷沙四来源原油资源量及探明储量对比表

图2-51 东营、沾化凹陷探明储量层系分布图

图2-52 东营、沾化化凹陷探明储量油藏类型分布图

总体来看,东营、沾化凹陷目前中浅层勘探程度较高,而深层勘探程度较低,而从咸化烃源岩的资源量及其油气成藏条件来看,受上覆沙三段泥岩的封盖,在没有垂向断裂作为运移通道的情况下,沙四段生成的油气不论是初次运移还是二次运移,在垂向上都是十分困难的,侧向运移应是其主要运移方向,这就为油气在烃源岩内部储层及下伏储层中聚集成藏提供了良好条件,尤其是坡折带断裂的发育,使得下伏储层与深部来源油气在侧向上实现对接,为油气充注成藏奠定了良好的地质基础。从剩余资源量来看,东营凹陷沙四下亚段剩余资源量约8×108t,沙四上亚段剩余资源量约12.65×108t,沾化凹陷沙四上亚段剩余资源量约8.45×108t,巨大的剩余资源量及下(深)部勘探层系较低的勘探程度均表明,沙四上亚段滩坝砂岩油藏、沙四下红层及孔店组储层、盆地边缘形成地层超覆油气藏及陡坡带的潜山具有良好的油气勘探前景。车镇凹陷的大王北洼陷、郭局子洼陷沙四上亚段烃源岩也具有较好的资源潜力,并获得部分探明或控制储量,大王北、郭局子洼陷沙四上亚段烃源岩剩余资源量分别为0.7×108t、0.71×108t,具有较好的勘探价值,由于这些洼陷沙四上亚段烃源岩规模相对较小,且上有较厚的沙三段泥岩覆盖,断裂活动减弱或停滞时间较早,烃源岩生烃较晚,对油气的垂向运移不利,侧向运移应是其主要方式。

2.东濮凹陷

到2009年年底,东濮凹陷累计探明石油地质储量5.79×108t(其中凝析油0.08×108t),探明率39.02%,剩余石油资源量9.05×108t;探明天然气地质储量1316.59×108m3(其中溶解气696.52×108m3),探明率为29.85%,剩余天然气资源量3093.59×108m3。

东濮凹陷石油资源量及剩余油资源量主要分布在濮城—文留—文明寨—卫城、胡状集—庆祖集两个地区,资源量为10.08×108t,占总资源量的67.92%,剩余油资源量为4.90×108t,占总剩余量54.14%。天然气资源量主要分布在濮城—文留—文明寨—卫城、桥口和兰聊下降盘,合计资源量为3492×108m3,占总资源量的79.2%,剩余天然气资源量在濮城—文留、兰聊下降盘、文明寨—卫城、西南洼、三春集—唐庄均有一定分布,但主要集中分布在桥口和兰聊下降盘,其剩余天然气资源量丰度分别为40.02×108m3/km2和39.36×108m3/km2(图2-53)。从纵向上看,石油资源量主要分布在沙二段和沙三段,占总资源量的86%,而剩余资源量主要分布在沙三段,占沙三段资源量60.6%。天然气资源量和剩余资源量主要分布在沙三段和沙四段,沙三段剩余资源量占该段总资源量的68.4%,沙四段剩余资源量占该段总资源量的71.2%。

图2-53 东濮凹陷各地区剩余油气资源量丰度图

从东濮凹陷油气成藏条件分析,长期活动的主干基底断层是油气运移的主要通道,后期发育的盖层断层可以造成断层封闭,中央低凸带的同向基底断层被反向盖层断层切割有利于油气在盖层断层下盘保存,东濮凹陷三叠系潜山圈闭形成期早于东营运动油气大规模运聚时间,也十分有利于油气成藏。

3.泌阳凹陷

截至2009年年底,泌阳凹陷共发现油气田9个,累计探明石油地质储量2.60×108t。按4.03×108t资源量计算,剩余资源量1.40×108t,资源探明率65.3%,剩余资源量丰度14×104t/km2。尽管泌阳凹陷资源量探明率高达65.3%,但是剩余资源量和剩余资源量丰度绝对值较大,剩余资源量仍然高达1.4×108t~1.0×108t,剩余资源量丰度仍然高达14×104t/km2~10×104t/km2,因此凹陷仍然具有较大的勘探潜力。

泌阳凹陷剩余资源量中,古城组合体为0.38×108t,占26.6%;王集-新庄组合体0.38×108t,占26.6%;双河-赵凹组合体0.30×104t,占21.07%;井楼组合体1976.5×104t,占13.8%;下二门组合体966.6×104t,占6.8%;大吴庄构造带初步评价认为没有聚集量。由此可见,平面上,王集-新庄、古城、双赵等组合体勘探潜力较大;纵向上主要分布在核三下段,核三下段剩余资源量0.85×108t,占全凹陷剩余资源量的59.3%,核三上段及上覆地层剩余资源量0.58×108t,占全凹陷剩余资源量的40.7%。

由于泌阳凹陷古构造格局和构造演化造成北部斜坡带的王集-新庄鼻状构造、古城鼻状构造、井楼地区西部断层极为发育,同时由于砂层很发育,部分断层对油气运移起疏导作用,因此,不排除更多核三下段油气向上运移至核三上段及其以上地层聚集成藏,造成核三下段剩余资源量偏大,核三上段剩余资源量偏小。同样,由于南部边界断层的多期持续活动,造成深部油气向上运移或原生油藏遭受破坏并向上调整聚集成藏,也可能造成核三下段剩余资源量偏大,核三上段剩余资源量偏小。

4.潜江凹陷

目前,潜江凹陷探明石油地质储量1.23×108t,剩余石油资源量3.12×108t。潜江凹陷剩余资源类型可分为常规、非常规两种类型,其中常规资源量是指潜江组和新沟嘴组砂岩资源,剩余资源量1.48×108t,占总剩余资源量的47.3%;非常规资源量是指潜江组盐间泥质白云岩资源,剩余资源量1.65×108t,占总剩余资源量的52.7%。在剩余资源量中,潜江凹陷剩余资源层系上分布不均衡,主要以潜江组为主,剩余资源量2.77×108t,占总剩余资源量的88.8%,其中潜江组砂岩剩余资源量1.13×108t,潜江组泥质白云岩剩余资源量1.65×108t,其次为新沟嘴组,剩余资源量0.35×108t,占总剩余资源量的11.2%。

在砂岩剩余资源量中,潜江凹陷砂岩剩余资源区块上分布不均匀,主要以潜北地区为主,剩余资源量1.13×108t,占砂岩总剩余资源量的76.3%,其次为潜南地区,剩余资源量0.35×108t,占总剩余资源量的23.7%。区带分布主要以钟潭断裂构造带、王广断裂构造带为主,剩余资源量分布分别为0.60×108t和0.31×108t,分别占总剩余资源量的40.6%和20.9%;其次为毛场鼻状构造带和周矶-张港构造带,剩余资源量分别为0.17×108t和0.13×108t,分别占总剩余资源量的11.4%和8.6%;再次为老新-新沟构造带、西部斜坡带和建新-拖市构造带,剩余资源量分别为0.093×108t、0.091×108t和0.089×108t,分别占总剩余资源量的6.3%、6.2%和6.1%。潜江凹陷盐间泥质白云岩剩余资源主要分布于潜北地区的王广断裂构造带和周矶-张港构造带,剩余资源量共计1.0789×108t,占其总剩余资源量的65.6%。

5.高邮凹陷

高邮凹陷油气资源量为4.19×108t,其中上含油气系统为1.61×108t、中含油气系统为2.07×108t、下含油气系统为0.51×108t(图2-54)。剩余资源总量为2.53×108t,其中上含油气系统为0.78×108t、中含油气系统为1.26×108t、下含油气系统为0.49×108t。总体看来,高邮凹陷油气储量的探明程度总体达39.6%,其中上含油气系统为51.6%、中含油气系统为39.1%、下含油气系统为4.0%。上、中、下含油气系统剩余资源的百分比分别为29.8%、48.5%、21.7%。总之,高邮凹陷的剩余资源近一半仍分布在中含油气系统,其次为上含油气系统,再次为下含油气系统。

图2-54 高邮凹陷各油气系统资源量分布图

剩余资源分布最多的中含油气系统,剩余资源主要集中在韦庄-马家嘴(0.28×108t)、周庄-陈堡(0.20×108t)、花庄-瓦庄(0.21×108t)、沙埝(0.20×108t)、瓦庄-吴岔河(0.14×108t)等运聚单元。其中上含油气系统的剩余资源集中在真武-许庄(0.20×108t)、马家嘴-联盟庄(0.10×108t)、黄珏(0.09×108t)、周庄-陈堡(0.06×108t)等地区。下含油气系统的剩余资源主要集中沙埝(0.23×108t)、瓦庄-吴岔河(0.12×108t)、周庄-陈堡(0.10×108t)等运聚单元。

非常规油气资源评价方法

基本上来讲每个行业都需要用大量的汽油所以当油价涨每个行业的成本都增加了,成本增加就转嫁给了消费者,物价也就自然涨了这样CPI自然也就涨了,CPI反映的是民生物资的涨跌,所以当民生物资涨了然后大家手里的闲钱就少了,也因为物价涨大家对其他东西的需求也会降低,所以最后一句话就是原油价格上涨对我国经济的最大影响是让经济萧条^_^2004年以来,我国石油和化工行业经济运行继续保持快速增长势头。1一5月份,原油生产7147.83万吨,同比增长1.8%;原油进口4976.0l万吨,同比增长37.6%;原油出口255.5万吨,同比下降31.9%;国内原油表观消费量为11868.3万吨,同比增长1-5.7%;原油进口依存度为41.9%,同比提高6.7个百分点。6月份,国际原油平均价格?布伦特现货?为35.6美元/桶,同比提高30.6%。纽约原油期货最高达到42.33美元/桶,创下纽约商品交易所1983年开始原油期货交易21年以来的最高价格。国际原油价格持续攀升,我国原油需求增加,进口快速增长,对我国经济将会产生什么影响呢?一、当前国际石油需求变化的总体判断?一?短期内国际石油供求关系总体宽松,但对我国石油消费增长需高度关注短期内,总供给能够满足总需求,不会出现石油供应大面积短缺的局面。据2002年统计,全球石油剩余探明可采储量1427亿吨,探明储量增加;世界十大石油消费国年消费量为35.2亿吨,世界十大石油生产国家年产量为35.9亿吨,供需基本平衡,略有剩余。但是,对我国石油需求增加和进口石油快速增长应该给予高度关注。1995年我国石油消费1.58亿吨,居世界第三位,2002年我国石油消费2.46亿吨,居世界第二位。2003年全球原油贸易量为20亿吨,我国原油进口0.9亿吨,占世界的4.5%,占我国原油消费总量的34%。我国石油消耗在逐年递增的同时,我国对进口石油的依赖度也在逐步提高。到2010年,中国的石油需求将达3.2亿吨,届时石油进口量将达1.6亿吨,石油需求在较大程度上依赖进口。尽管我国是世界第二大石油消费国,但在影响国际石油价格的比重上却达不到0.1%。中国需要采取积极策略,从国际价格的被动承受者变为积极影响者。?二?全球石油价格将维持高价位当前驱动国际油价持续在高位徘徊的直接原因有以下几个方面:首先是世界经济复苏,石油需求增加。美国能源部情报局发表的2004~2005年世界石油预测报告显示,世界石油需求将大幅度增长,世界石油需求在2003年增长1.8%以后,2004~2005年的增幅可能超过2%。国际能源机构?1EA?曾预测,2004年世界石油需求将增加100万桶/日,而3月11日又把需求增加量调高到165万桶/日,达7990万桶/日。其次是OPEC继续采取限产保价政策。特别是美元汇率走低,为减少损失,会继续提高油价。尽管6月初OPEC部长级会议宣布分别于7月和8月增加200万桶和50万桶的原油产量,但实际增量有限,因为此前欧佩克国家石油产量实际已大量超产。随着美元汇率的继续疲软,欧佩克国家提高油价的决心将更加坚定。第三是探明可采石油储量不足。石油是关系到国计民生的战略性商品,也是非再生资源。专家分析,低成本的大油田现在基本上都已被发现,世界石油产量将在2015年以前达到顶峰,在石油产量递减之后,石油供不应求即会出现。迄今为止,人类每天用油约8000万桶,1年约300亿桶。现在已探明可开采的石油储量为1万亿桶,预计还有未探明的、开采困难大、成本高的石油储量1万亿桶。未来开采新的石油资源将更加困难。第四是石油投机推动油价上涨。在供求关系没有发生重大变动的情况下,油市动荡在很大程度上是由市场投机造成的。美元汇率对国际主要货币走低,包括对冲基金在内的国际游资在石油期货上的投机,使油价保持在较高水平。油市背后的期货投机常常是操纵油价涨落的黑手。石油期货交易量目前约为现货交易的好几倍,据估计,在石油期货市场上,真正的需求方只占交易总量的三成,其余均为套利者。第五是政治因素的影响。当前海湾地区和一些产油国国内局势动荡,包括伊拉克在内的国际主要产油国政局至今动荡不安,恐怖活动接连在世界各地发生,使主要产油国原油生产面临随时受阻的风险,从而严重影响国际原油市场的稳定。专家分析,从总体和长期来看,油价下降将是短暂的,走高攀升是长期趋势。从近期来看,被扭曲的石油价格经过市场的调节和各方力量的较量后将会缓慢回落,但是,回落的空间将十分有限,预计将在每桶28~33美元之间上下波动。二、全球石油供应变化基本情况分析一是世界油气资源潜力巨大,但分布不均,存在许多机会。综合各权威机构的分析预测,2002年世界油气剩余探明可采储量分别为1427亿吨和155.78万亿方米,当前石油剩余可采储量至少可持续供应39年以上,天然气可供应61年以上。从国家分布来看,整个欧佩克国家的石油剩余探明可采储量为1119亿吨,占世界的78.2%,储采比高达82年。沙特阿拉伯、伊拉克、科威特、阿联酋、伊朗、委内瑞拉高居世界石油资源国的前六位。这6个国家的石油剩余探明可采储量占世界的70.2%。二是20年内世界石油供需基本平衡,但地区不平衡加剧。主要是世界石油消费中心在移动,亚洲消费量剧增。1982年世界石油消费量为28亿吨,2002年增至35亿吨,20年间增长了7亿吨,年均增长1.5%。其中北美、欧洲和亚太三大地区2002年石油消费量为29.82亿吨,占世界消费量的84.6%。独联体各国经济出现滑坡,石油消费量剧降,从1990年的4.2亿吨,降至2000年的1.73亿吨,下降60%。亚太地区发展中国家经济快速发展,石油需求剧增,从而带动整个地区石油消费由1985年的5亿吨增至2002年的9.92亿吨,增长了4.92亿吨,约占同期世界石油消费增长量的67%。1992年以来,亚太地区的石油消费量已超过欧洲,成为世界第二大石油消费区,与北美、欧洲一起呈现三足鼎立之势。2002年前七大石油消费国中有四个国家在亚太地区,其中中国排第二,日本排第三,韩国排第六,印度排第七。三是世界石油资源的争夺将更加激烈,争夺的热点地区在中东、里海、西非等地区。由于里海、西非等地区石油储量有较多的发现,处于石油生产的上升期,而且相对中东地区局势相对平稳。里海地区又靠近欧、亚两个消费市场,因此,国际石油公司对上述两个地区增加了投资,加大了勘探开发的力度。尤其是俄罗斯期望通过石油、天然气等能源武器,保持大国的地位,里海地区是前苏联重要能源基地之一,俄罗斯也会加快该地区开发和能源的合作。可以预测,中东北非地区仍然是石油主要供应地区;中亚里海、西非地区石油供应将处于上升时期,作为非欧佩克的俄罗斯在石油市场将举足轻重;中南美石油供应国的地位将下降。四是世界中长期油价将在波动中逐步有所上升。欧佩克的预测根据其油价目标并按2000年美元价值,预测油价在2010年前将保持25美元/桶的水平,之后逐渐升至30美元/桶。三、油价变化对我国经济的影响油价的大幅上涨对发达国家经济影响较大,因为石油在其能源消费结构中的比例大,单位油耗高,其经济严重依赖石油。经过两次石油危机的洗礼和知识经济的发展,发达国家抗油价上涨的能力大大提高。目前高能耗传统工业在发达国家经济结构中的比例下降,单位GDP油耗大幅减少,防范石油危机的能力大幅提高。而不发达国家正处在工业化时期,节能和替代能源发展慢,单位GDP油耗较高,经济增长对高效优质的石油依存度较高,且防范石油危机的能力较弱,高油价对其经济的冲击也比较大。在历史上的两次石油危机中,西方发达国家经济受冲击的程度大于不发达国家。但在2000年世界油价涨到将近40美元/桶的高价时,发达国家经济受影响程度却明显减小。而一些发展中国家却深受其害:债务危机、政府危机、社会危机、等各种政治经济社会问题不断爆发,油价的大幅上涨对加速加深这些问题的爆发起着推波助澜的作用。2000年世界一些权威机构估算,油价上涨10美元/桶,并在这个价位上保持一年,对发展中国家经济增长率的影响是世界平均水平的1.5倍,是发达国家的3倍。我国1993年开始成为石油净进口国,介乎自给自足型国家与消费国之间。由于目前我国石油净进口量只占国内石油消费的一部分,因此,到目前为止我国仍可划为基本自给自足型国家。油价的变化对类似我国?既是石油生产国,又有一定量的石油进口?的国民经济的影响可用下图粗略的表示。从国民经济的三个因素消费、出口和投资看,油价上升将使其消费和投资减少,出口下降,因而使国民经济受到不利影响。相反,如果油价下降?但不是太低,因如果太低,将使其石油工业受到严重影响,因而影响国民经济?,将有利于国民经济发展。有关专家对我国1993~2000年的GDP、石油进口数量和价格波动进行了综合分析,分析结果认为:油价每上涨1%并持续一年时间,将使我国国内生产总值增长率平均降低0.01个百分点;1999年国际油价上涨10.38%,影响我国GDP增长率约为0.07个百分点;2000年国际油价上涨%,影响我国GDP增长率0.7个百分点,按2000年国内生产总值8.8万亿人民币计算,相当于损失600亿元人民币以上。从经济发展来看,高油价对我国国民经济发展是不利的,据国际货币基金组织预测,石油涨价10美元/桶,亚洲经济增长速度下降0.8%。从进口方面来看,油价高,石油进口越多,外汇支出越大,我国每年进口石油约用汇350亿美元,是我国外贸逆差主要因素。从出口方面来看,石油价格越高,下游产品生产成本增加,出口产品竞争力下降,出口受到很大影响。从交通运输来看,石油价格越高,成品油价格上升,运输成本增加,推动生产资料及消费品价格走高。总之,石油价格上升对我国国民经济总体是不利的,但在当前影响不是很大。若对石油依存度继续提高,影响会越来越大。

决策分析是油气资源评价的必然延伸

随着非常规油气勘探开发技术的快速发展,非常规油气资源评价方法研究越来越受到重视。目前,国内、外非常规油气资源评价方法比较多(表2-8),分类也比较混乱。国内的评价方法超过10种,其中致密砂岩气评价方法就多达9种(郭秋麟等,2009;董大忠等,2009)。美国USGS为了便于评价,将油气资源分为常规和非常规油气资源两大部分,其中非常规资源(致密砂岩气、页岩气、煤层气和天然气水合物等)被称为连续型油气资源,非常规资源评价方法与连续型油气资源评价方法基本相同(Schmoker,2002;Olea et al.,2010)。国外最常用的方法是类比法、单井储量估算法、体积法、发现过程法和资源空间分布预测法等。

以上方法可归纳为类比法、统计法和成因法三大类。类比法:国内常用的类比法是单位面积资源丰度类比法,这种方法与常规油气资源评价的类比法相似;国外主要采USGS的FORSPAN法及其相应的改进方法。统计法:主要有体积法、“甜点”规模序列模型法、“甜点”发现过程法、单井储量估算法和油气资源空间分布预测法等,这些方法与常规油气资源评价法相似。成因法:国内用得较多,主要有盆地模拟法和热解模拟法。下面分别介绍这些方法中有代表性、较特殊的几种方法。

表2-8 国内、外非常规油气资源评价方法

一、类比法

类比法是USGS的主流评价方法。该方法最早由咨询公司评价员JohnGrace开发(NOGA Assessment Team,1995)。1995年,USGS的Schmoker接管了该方法后对其进行了扩展和改进,在2000年至2002年期间做了大量的应用(Schmoker,2002)。最近几年,Klett等(2003)继承和发展了该方法,特别是在数据库、参数分布、图表输出标准等方面的发展显著,现该方法已达到较为完善的程度。

1.评价单元与最小评价单位

USGS将目标评价层次划分为大区(region)、地质区(geologic province)、总含油气系统(TPS)、评价单元(AU)和最小评价单位(cell)。大区为组织单元,地质区是指具有共同地质属性的空间实体,总含油气系统是指具有共同的生、储、盖、运、圈、保等地质特征的可绘图的实体,评价单元是总含油气系统的一部分,由许多cell组成。在早期的评价网格中cell是指一个矩形网格,在目前的评价网格中cell是指由一口井所控制的排泄区(well drainage area)。

2.主要评价参数

主要评价参数包括:

(1)评价单元总面积(U);

(2)未测试单元总面积占评价单元总面积的百分比(R);

(3)未测试单元面积中具有增加储量潜力的百分比(S);

(4)每个有潜力的未测试cell的面积(Vi);

(5)每个cell的总可采储量(Xi);

(6)未测试单元平均产油气比率;

(7)天然气评价单元液/气比率。

以上主要评价参数用于直接计算资源量。在参数前处理过程中,已有的钻井资料主要用于储层参数(如厚度、含水饱和度、孔隙度、渗透率等)的分布研究、权重系数的确定、最终储量和采收率的估算。在缺乏足够的钻井和生产数据的地区,评价参数主要通过类比获得。

3.评价流程

该方法适合于已开发地区的剩余资源潜力预测。通过模拟每一个cell的参数分布,用相应的参数分布计算cell的资源量,并汇总为整个评价单元的剩余资源总量(图2-9)。结果用概率形式表示。评价过程主要有以下4步:

图2-9 连续型油气聚集评价流程

第一步:确定有潜力的未测试单元比例(T),即:

非常规油气地质学

第二步:计算有潜力的未测试单元面积(W),即:

非常规油气地质学

第三步:确定有潜力的未测试cell的个数(N),即:

非常规油气地质学

第四步:计算评价单元总资源量(Y),即:

非常规油气地质学

公式中的符号说明见上文“主要评价参数”部分,求解方法均采用随机模拟法。

二、随机模拟法

随机模拟法是USGS新推出的方法。2010年12月,Olea等认为传统的类比法存在3点不足:第一,忽略了不同评价单元EUR的空间关系;第二,没有充分挖掘已有数据所隐含的信息;第三,评价结果违背空间分布规律。

针对以上不足,USGS提出了一种新的方法———随机模拟法。该方法与类比法的不同之处有以下几方面:第一,算法的发展,由原来的类比法发展为以统计法为主、类比法为辅的综合评价法,在有井区采用序贯高斯算法的随机模拟法;在无井区采用类比法,通过类比得到EUR的空间关系及相关参数,然后进行多点模拟。第二,地质建模的发展,在此之前采用三角分布来确定参数;现在通过分析空间数据间的关系,用地质统计学方法建立参数空间分布模型。第三,模拟单元采用最早的网格单元cell,它与原来的cell有很大的不同,新cell的面积很小,接近于单井控制的排泄区或更小。

新方法根据钻井情况确定两套评价过程,即A过程———在已有钻井地区的评价步骤和B过程———在无钻井地区的评价步骤。

1.A过程———已有钻井地区评价步骤

A过程属统计法,共有11步:第一,选择单元格尺寸和形状等基本评价单位;第二,指定已知井排泄区;第三,建立每口井排泄区的形状和位置模型,每个井排泄区相当于多个相邻单元格的集合体;第四,为每个无产能井限定无产能区范围;第五,通过确定单元格、排泄区、井的关系,为每个网格单元准备一个相应的EUR(最终可采储量)数据集;第六,为每个测试单元准备一个包含3条信息的指示数据集,即单元格中心的纵、横坐标和一个指示器,指示器为0表示单元格没有产能,为1表示有产能;第七,如果该区域没有数据或者很少数据,不确定性很大,则需要准备一张克里金估计误差图,并由此确定评价区的边界;第八,采用序贯指示随机模拟方法至少模拟100次产能指示器,指明单元格有无产能;第九,采用序贯高斯随机模拟方法模拟单元格EUR,模拟次数与指示器的模拟次数相同;第十,利用第八步中生成的图件修正第九步中生成的图件,以上每次模拟结果的发生都是等概率的;第十一,采用等概率模型,汇总以上模拟的结果。

2.B过程———无钻井地区评价步骤

B过程属类比法,共有9步:第一,选择地质条件相似的成熟区作为类比刻度区,用A过程模拟,根据模拟图像和经验确定边缘区(评价区)的EUR波动特征;第二,确定评价区边界;第三,变换EUR值的概率分布和训练图像到标准刻度,使其服从均值为0,方差为1的正态分布;第四,利用连续滤波模拟,生成单元格产能的至少100次实现;第五,把实现从正态分布空间反变换到原来的EUR空间;第六,有规律地抽取1%的单元样本,生成一个产能指示数据集。定义数值在d%以下的那些单元为没有产能,以上的单元格有产能,这里d是在类比刻度区中无产能井的比例;第七,运用正态分布对有产能和无产能单元进行条件模拟,生成与第四步相同数量的实现;第八,利用第七步中的实现来修正第五步,得到评价区模拟的最终实现;第九,应用至少100张单元格EUR值等概率图,准备评价,汇总评价结果。

三、单井储量估算法

单井储量估算法是一种典型的统计法,由美国Advanced Resources Informational(ARI)提出,核心是以1口井控制的范围为最小估算单元,把评价区划分成若干最小估算单元,通过对每个最小估算单元的储量计算,得到整个评价区的资源量数据,即

非常规油气地质学

式中:G为评价区资源量;qi为单井储量;i为评价区内第i个估算单元;n为评价区内估算单元数;f为钻探成功率。

此方法包括5个关键步骤,即确定评价范围、确定最小估算单元、确定单井储量规模、确定钻探成功率和确定气藏“甜点”。

四、油气资源空间分布预测法

油气资源空间分布预测法为特殊统计法,有3种不同的评价方法:一是基于成藏机理和空间数据分析的方法;二是基于地质模型的随机模拟方法(Chen et al.,2006);三是支持向量机的数据分析法(Liu et al.,2010)。以上3种评价方法除了数理统计分析不同外,其思路和评价过程基本相似,仅介绍第一种方法。

1.二维分形模型

由于地质过程的复杂性,无法将油气资源空间分布以某一精确解析式的形式来描述。已知油气藏本身并不包含未发现油气藏的直接信息,因此用常规地质统计学的随机模拟方法,直接从已知油气藏中提取空间统计信息,预测油气资源空间分布,其结果往往不尽如人意。但是,如果把已知油气资源分布和地质变量在空间的相关特征作为随机模拟的限制条件,用统计方法将这种相关特征以概率密度函数近似表达出来,就可提高预测的准确性。

油气资源空间分布的二维分形模型基于随机模拟技术和傅立叶变换功率谱方法建立,即通过傅立叶变换,把具有分形特征的油气藏分布空间(空间域)转化到傅立叶空间(频率域)中,用功率谱方式来表述油气资源的空间相关特征。根据分形理论,分形模型研究对象的空间相关特征可由功率谱函数来表达。对于具有分形特征的时间序列,其功率谱函数可表达为时间序列频率的幂函数

非常规油气地质学

式中:f为频率;S为功率谱密度;β为幂因子,称为频谱指数。上式表述的这种随机过程相当于Hurst空间维数H=(β-1)/2的一维分数布朗运动(fBm)。选择不同的β值,即可产生不同分形维数的fBm。对于二维图像或序列,其功率谱S有x和y两个方向的频率变量(u和v)及对应的频谱指数(βx和βy)。对统计特性来说,xy平面上的所有方向都是等价的,当沿着xy平面上的任一方向切割功率谱S时,可用

非常规油气地质学

代替频率f。因此,由式(2-6)可推出各向同性的二维对象随机过程的表达式:

非常规油气地质学

而对于各向异性的对象,可定义H为方位角θ的函数,则其二维分形模型的表达式可写成:

非常规油气地质学

式中:βx和βy分别代表功率谱中x方向和y方向的频谱指数。通过这个表达式就能模拟出油气藏分布空间的新功率谱。

2.修正资源丰度

二维分形模型中的指数函数H(θ)可以通过实际数据拟合βx和βy后获得。功率谱能量(资源丰度)越高的油藏,出现的频率越低,反之亦然。这一特点与油气勘探结果相吻合。因此,如果以能量较高的若干数据点为基础进行拟合,结果基本能代表该方向上油气资源的分布趋势(分形直线)。拟合的直线斜率(绝对值)即为该方向上的频谱指数。分别确定x方向和y方向上的频谱指数βx和βy后,代入二维分形模型中,就能模拟出新的功率谱S。新功率谱已修正了原始功率谱的不足,它包含了所有油气藏(已发现和未发现油藏)资源丰度的信息。

3.资源丰度空间分布模拟

确定油气藏在空间的分布位置是油气勘探的首要任务。目前,有许多方法可以预测油气勘探风险,绘制勘探风险图。勘探风险图包含了油气藏可能出现位置等方面的信息。为了把这一信息和资源丰度信息综合起来,需要做如下信息处理:①空间域转化为频率域。同样,用傅立叶空间变换,把勘探风险图从空间域转化到频率域。这时,除了得到以上提到的功率谱外,还能得到相位谱Ф,相位谱中包含着油气藏位置信息。②从频率域回到空间域。用傅立叶逆变换,把新的资源丰度功率谱S和勘探风险图的相位谱Ф结合起来,形成新的图。该图就是空间域中的油气资源分布图,它不仅提供了油气藏的位置,也指出了资源丰度。

在具体实现中,还需要在一些细节上做技术改进,包括设置经济界限,排除丰度低的没有经济价值的油气藏以及用已钻井数据验证和修正等。

五、连续型致密砂岩气预测方法

这是一种特殊成因法。对于常规储层及常规圈闭气藏,天然气的运移主体服从置换式运移原理,即在天然气向上运移的同时,地层水不断向下运移,形成了气水之间的置换式排驱和运移特点,其驱动力来自于浮力。对于致密砂岩气藏来说,致密储层与气源岩大面积接触,天然气的运移方式表现为气水之间发生的广泛排驱作用和气水界面的整体推进作用,其过程类似活塞式排驱,其运移动力来源于烃源岩的生烃作用,即在生气膨胀力作用下,气水倒置界面得以维持并整体向上运移,从而形成大面积的地层饱含气状态(金之钧等,1999;Schmoke,2002;张金川等,2003a,2003b;解国军等,2004;张柏桥,2006;胡素云等,2007;邹才能等,2009a)。烃源岩层越厚,单位体积生气量越大,产生的压力就越大,形成的致密砂岩气藏规模也就越大。

1.致密砂岩气动力平衡方程

根据致密砂岩气藏的活塞式排驱特点,提出了弱水动力条件下的平衡方程,即天然气运移的阻力包括上覆储层毛细管压力、天然气重力、地层水压力等,驱动力主要为烃源岩生气产生的压力。驱动力和阻力之间的平衡方程为:

非常规油气地质学

式中:pgas为烃源岩中游离相天然气的压力(注入储层的压力),atm;pc为上覆储层毛细管压力,atm;ρggghg为天然气重力,atm,其中hg为天然气柱高度,m;ρf为上覆储层地层水压力,atm。

在上述平衡方程中:①毛细管压力可用拉普拉斯方程求出;②天然气重力可以直接求出;③地层水压力,在成藏时一般为静水压力,成藏后的压力可用现今压力代替,也可用有效骨架应力模型求解(石广仁,2006);④烃源岩中游离气压力,为烃源岩生气增压后烃源岩中流体和游离相天然气的压力,简称“游离气压力”。

烃源岩大量生气能产生巨大的膨胀压力,这早已被石油地质研究者所共识(李明诚,2004),但是迄今只有定性描述,未见定量计算模型。显然,在没有生气增压定量计算模型之前是无法真正定量模拟致密砂岩气藏的成藏过程的。

2.烃源层生气增压定量计算模型

超压形成的因素很多,除了生烃作用以外主要有差异压实作用、水热作用等。相比之下,生烃作用和差异压实作用是最主要的两种因素(李明诚,2004)。在地层进入压实成岩之后,特别是孔隙致密之后,压实作用基本停止,此时压实对排烃基本不起作用,而生气作用则成了排气的主要动力。依据气体状态方程,天然气压力(P)、体积(V)和温度(T)三者之间保持动态平衡。在地下高温、高压下,P、V和T三者之间的关系可用研究区的PVT曲线表示。根据这一原理建立的烃源层生气增压定量计算模型为:

非常规油气地质学

式中:Pgas为烃源岩生排气产生的压力,atm;Bg为天然气体积系数,m3/m3;Vp为烃源岩层孔隙体积,m3;Vw为烃源岩层孔隙水体积,m3;Vo为烃源岩层孔隙含油体积,m3;Vg为烃源岩层中游离相天然气体积(地表条件下),m3;hs为烃源岩层厚度,m3;Φ为烃源岩层的评价孔隙度,小数;Sw为烃源岩层中束缚水饱和度,小数;So为烃源岩层中残余油饱和度,小数;Qgas为单位面积烃源层生成的天然气体积(地表条件下),m3/km2;Qmiss为单位面积烃源岩层中散失的天然气体积(地表条件下),m3/km2,包括吸附气、扩散气和溶解气等;Qexp为单位面积烃源层已排出的游离相天然气体积(地表条件下),m3;初始值为0。

3.模拟步骤

模拟步骤如下:①建立地质模型,以下生、上储模型为例;②在平面上划分网格,网格边界尽可能与构造线(如断层线等)一致;③在纵向上按油气层组细分储层;④计算运移驱动力———烃源岩层中游离相天然气压力;⑤计算运移阻力———细层1的毛细管压力、天然气重力、地层水压力等;⑥比较运移驱动力和运移阻力,如果驱动力小于阻力则不能运移,即该细层1不能成藏,停止对该点的模拟,如果驱动力大于阻力则烃源层中的气能进入细层1,并排挤出细层1中的部分水;⑦天然气进入细层1并达到短暂的平衡后,随着烃源岩层生气量的增加,游离相天然气压力Pgas也在增加,重新计算Pgas,并计算细层2的运移阻力;⑧比较运移驱动力和运移阻力,如果驱动力小于阻力则不能运移,即细层不能成藏,停止对该点的模拟,如果驱动力大于阻力则烃源层中的气能进入细层2,并排挤出细层2中的部分水;⑨重复第⑦和第⑧过程,直到驱动力小于阻力或遇到盖层为止(如果压差超过盖层排替压力,则天然气将会突破盖层散失掉一部分,直到压差小于盖层排替压力,天然气才停止运移);⑩计算天然气聚集量,模拟结束。

4.天然气聚集量计算

进入致密储层的天然气聚集量可用下式表示:

非常规油气地质学

式中:Qgas为储层中天然气聚集量,m3;n为天然气进入到储层中的细层数,自然数;i为储层中的细层号,自然数;q为细层中天然气聚集量,m3;Sw为细层中束缚水饱和度,小数;hi为细层i的平均厚度,m;Ai为细层i的面积,m2;Φi为细层i的平均孔隙度,小数;Bgi为细层i的(地层压力对应的)天然气体积系数,m3/m3。

根据对比驱动力与阻力的关系,如果确定天然气只能进入到细层3,则上式中n为3。另外,细层中束缚水饱和度,可通过类比相邻地区的致密气藏获得,一般在30%~60%之间;天然气体积系数,可根据细层地层压力在PVT曲线上的反插值求得。进入致密储层的天然气还会有一部分损失,如部分溶解在地层水中,还有一部分会以扩散方式向外扩散等。这些损失可以用溶解气公式和扩散气公式计算(郭秋麟等,1998;石广仁,1999),在不要求高精度时可以不考虑。

5.关键参数

关键参数有:①天然气体积系数与地层压力关系曲线;②束缚水饱和度与孔隙度的关系曲线;③烃源层埋深、厚度、孔隙度、生气量、排气量(游离气量)等;④储层埋深或顶界构造图、等厚图,储层孔隙度等值图、孔喉半径等值图,现今储层流体压力系数等;⑤盖层排替压力。

中国石油进口量与国际石油市场价格变化趋势分析

油气勘探开发是一个投资巨大、周期较长和风险极高的巨型工程,在市场经济条件下,它是一种企业行为,任何失误哪怕是一个小小的失误都可能造成重大的损失,因此在勘探开发部署及实施过程中自始至终贯穿着“决策”。早年勘探开发主要是在资源丰富、地质条件相对简单、勘探开发难度小和成本较低的地区进行,决策者仅根据成藏地质条件分析即可作勘探开发部署。随着勘探开发的不断发展,勘探开发的重心逐渐向新地区、新层位和新油气藏类型转移。由于这些领域埋深大,地质条件复杂,勘探开发难度加大,成本迅速增高,所以开展科学而系统的决策分析,优选投资方向和部署方案,对于减少勘探开发风险,提高勘探开发成功率和经济效益、社会效益,具有重要的现实意义。西方石油公司把决策分析视为其生存和发展的“生命线”。由于种种原因,我国油气勘探开发领域直到80年代中后期才开始引入并应用系统的决策分析。随着我国经济体制向社会主义市场经济的转轨,以经济效益为核心的决策分析将在油气勘探开发中占有重要地位并迅速发展起来。

长期以来,人们只把油气资源评价理解为资源量估算,以往的评价工作也局限在解决有无油气、有多少和分布在何处等三方面的问题。显然,这种油气资源评价与勘探开发是相互割裂的,评价结果不能很好地为制定国家能源政策和进行勘探开发部署服务。因此,许多决策者认为资源评价只是一种数字游戏,没有多大现实意义。事实上,若评价工作不能为勘探开发部署提供科学依据,就失去了其意义。为了加强评价与勘探开发的联系,有必要重新定义油气资源评价概念,扩大其外延,将勘探开发决策分析包括进来,进一步回答怎样勘探开发和预期效益如何等问题。随着决策分析在勘探开发部署中的作用日益明显,专家们越来越认识到决策分析是油气资源评价中不可分割的重要组成部分,决策分析是油气资源评价在新形势下的必须延伸与发展。没有决策分析的油气资源评价是不完整的,不彻底的,只有在含油气性分析和资源量预测基础上进一步开展经济分析和决策分析才具有重要的应用价值,才能更好地为勘探开发部署服务。

油气资源供应量变化趋势预测

石油和天然气市场是一个最典型的全球化市场。虽然V.I.Vysotskii和A.N.Dmitrievskii乐观地估计,目前全球可开采油气资源为5547×108t石油和634.3×1012m3天然气[42]。但是,因为油气资源的稀缺性、资源禀赋的不均衡性,以及卖方市场的特殊性,致使石油和天然气产品被国家垄断,其销售带有浓厚的政治色彩,因此使得世界油气市场的价格受控于这些国家或其组织。那么,价格变化规律也不例外。而油气价格的波动将会给石油进口的成本管理带来极大的不确定性,导致经济风险增加。

另外,石油价格与国家经济发展密不可分。据IMF公布的数据显示,原油价格每上升10%,全球的GDP会减少0.10%~0.15%[47]。2005年原油国际价格较2004年上涨42.1%,世界经济因此减缓了0.8%[48]。因此,说明油价的波动将影响到国家的经济发展,以及战略油气储备的价值。另一个值得重点关注的是世界石油市场的价格变化趋势,这将关系到中国石油进口的经济安全性。

1.国际石油市场价格变化分析

近30年来,世界油气市场的价格变化波动很大且总体呈上升趋势。从1980年以来,国际石油市场的交易价格总体呈现不断上升趋势的同时,还具有明显的其他特征。

一是不同地方的石油交易价格差别较大的同时又具有地域代表性。就BP公司2010年的世界能源报告中公布的数据来看,4个具有代表性的世界石油交易价格,即迪拜(Dubai)、布伦特(Brendt)、福卡斯(Nigerian Forcados)和西德克萨斯(West Texas Intermdiate,W T I)。它们分别代表着中东、欧洲、非洲和美洲地区的石油交易价格。基本呈现前者的石油交易价格最低,西德克萨斯价位较高的规律。但是,2005年以后福卡斯取代了高油价地位,2011年和2012年西德克萨斯取代了低价位地位(图6-3)。这与该地区的石油需求状况和油质水平挂钩,2007年后受美国金融危机影响,世界各地石油交易价格差从7.09美元/桶(2008年)降到1.96美元/桶(2009年)。同时,也应该看到美国的页岩气的开发利用,这个石油资源替代品对其价格的影响非常明显。

图6-3 1980-2010年世界石油交易价格变化趋势图(数据来源:BP Statistical Review of World Energy June 2013)

二是不同地域的石油交易价格差在不断地加大,同时显示价格差与价格水平有一定关系。1980年到1989年间平均价格差为2.10美元/桶、1990年到1999年为3.09美元/桶,而到了2000年至2009年间就上升为4.91美元/桶。利用1980年至2011年间迪拜(Dubai)、布伦特(Brendt)、福卡斯(Nigerian Forcados)和西德克萨斯(WTI)的石油交易价格数据,可以计算出每一年的石油交易价格极差值(图6-4),其也显示世界石油价格地区差别不断加大的趋势,尤其是21世纪以来更加明显。

图6-4 1980-2010年间世界石油交易价格极差变化趋势图

三是世界石油价格在2008年达到有史以来创纪录的油价147美元/桶。虽然2007年以后至今欧洲和美国受到金融危机的影响,经济发展呈现负增长,能源消费随之下降,但是经济发展受人关注地从西方转向了东方,中国和印度的经济发展不容置疑在该时期对整个世界经济发展起到了重要推动作用,由此也带来了对石油需求量的提高,石油使用量的增长也就从西方转向亚洲,世界对石油的总需求量增长还是基本没变,致使石油价格在该时期下降程度超出估计。

里卡多战略咨询公司在2011年公布的一项研究报告中指出,影响世界市场油价的主要因素分为供给因素、需求因素等。包括OPEC的产能、配产政策,以及石油公司在石油期货市场上的投机行为等[49]。

2.中国石油进口量与国际油价变化关系分析

世界石油交易价格的大起大落对中国产生影响的最直接途径就是中国进口石油资源量(表6-6)。

表6-6 中国石油进口量与油价变化趋势

数据来源:中国国土资源综合统计年报1990—2008,中国海关统计年鉴2008-2013,中石油网,BP Statistical Review of World Energy June 2013。

中国的石油生产与消费需求的关系从1993年开始出现不平衡以来,就不得不依靠石油的进口来弥补其差额。因此从1994年至2012年间,表6-6数据就显示随着中国年需求量的迅速提高则从国外进口石油的量逐年攀升。1996年比1994年增加了近7倍,而2004年比1994年增长了60多倍。从2000年以来,中国年进口量比20世纪90年代增长速度加快,尤其是2008年以后(图6-5)。2000年5.1294×108桶到2007年的11.9109×108桶,8年时间增长了1.32倍(表6-6)。中国石油进口量变化有3个较为明显的增长台阶,2000年、2004年和2008年(图6-5)。中国有如此强劲的石油进口需求,那么国际油价与其关系非常值得研究。

图6-5 中国石油进口量与国际石油价格变化趋势图(数据来源:BP Statistical Review of World Energy June 2013)

世界石油交易价格相对较高地区代表为西德克萨斯和布伦特价格。以此为代表,与中国石油进口量的变化规律总体趋势比较。由此(图6-4)显示,总体趋势是世界石油价格不断上升,中国的石油进口量不断提高。但是2000年至2002年,随着布伦特石油价格降低,中国石油进口量却有所减少;2009年受世界金融危机的影响,世界石油价格下跌,中国的石油进口量却一直快速增加。这可能与中国的战略石油储备基地基础设施建设陆续完工进入注油期有关。中国石油进口量变化趋势和世界油价相对较低的地区代表价格迪拜和福卡斯的变化规律与前基本相同。

从中国石油进口价格与国际石油市场价格走势比较来看,2000年至2003年间,中国进口石油的平均价格基本与国际油价的最高值持平,以后该问题有所缓和(表6-7,图6-6)。但是这个平均价格是由不同品质的原油进口金额平均而得,若低质低价的原油进口的多,那么平均价格就会下来。所以这还不能说明中国原油的进口完全抓住了国际原油市场最低价格机会了,只是已有这种倾向。

表6-7 中国石油进口平均价格与油价变化趋势 单位:美元/桶

续表

数据来源:中国国土资源年鉴2001-2009;中国海关统计年鉴2009-2013;BP Statistical Review of World Energy June 2013。

注:平均进价由进口量与金额计算而得。

图6-6 中国进口原油平均价格与国际油价比较(数据来源:中国国土资源年鉴2001-2009,中国海关统计年鉴2009-2013,BP Statistical Review of World Energy June 2013)

通过以上分析可知,中国石油进口量增加时国际油价就上升,当然这本身也符合市场经济规律。这个现象可以从两方面理解:一是,只要中国石油进口需求加大,国际市场就会提价;另一个方面也可以认为中国的石油需求对国际油价已经有了影响的力量。前者对于中国发展经济,在国际石油市场上的地位等都为威胁因素,后者则说明已有了影响市场的机会。所以应该想办法采取措施,抓住该机会,以促进国家的经济发展、国际名声的提高。

浙江石化价值分析化工成长龙头电话会议之四

(一)预测模型选择及可行性分析

用于预测研究的模型有很多,如指数平滑模型、回归分析模型、灰色预测模型等。使用不同的预测模型需要满足不同的条件,因此,对中国石油或天然气的储量、生产量、消费量和进口量值进行预测,首先要根据数据变化的基本规律选择相关预测模型。

1.石油资源供应量预测模型选择

根据BP公司2013年的能源统计报告,可以得到从1980年至2012年间中国石油储量和生产量(表4-5)。

表4-5 中国石油历年储产量统计 单位:106t

续表

数据来源:BP Statistical Review of World Energy June 2013 和中国国土资源综合统计。

注:储量数据换算系数吨桶7.3(中石油)。

将表4-5数据做散点图(图4-4)后可见,1980年至2010年间,中国石油储量值的变化规律略显特殊,需要分段研究。石油生产量数据规律性较强,可以采用回归分析法。将表4-4数据做散点图(图4-5)可见,进口量的数据变化规律性较强,也可采用回归分析法。如果预测采用回归分析,其模型的选择需根据计算出的可决系数(R2)来决定。

2.天然气资源供应量预测模型选择

根据BP公司2013年的能源统计报告,可以得到从1980年至2012年间中国天然气储量和生产量(表4-6)。

表4-6 中国天然气历年储产量统计 单位:108m3

数据来源:BP Statistical Review of World Energy June 2013。

将表4-6数据做散点图(图4-6)。散点图趋势显示,中国天然气储量和生产量的数据变化规律性较强,可采用回归分析法。

图4-4 中国历年石油储产量数据散点图

图4-5 中国历年石油进口量数据散点图

图4-6 中国历年天然气储产量数据散点图

(二)储量预测

1.石油资源储量预测

对表4-5中的储量数据进行初步观察,发现数据分布呈现的规律分为两时段(图4-5显示)。并且因勘查条件的影响,石油储藏量与当年是否发现新的更大的油田有很大的关系,因此数据呈现不太规则的周期性变化。为了提高预测的准确度和可信度,对中国石油储量的预测分为两段进行:第一时段,1980年至1998年间,散布图具有周期波动状变化特征,但起伏较大;用1998年以前的数据,预测1999年至2020年的储备量,时间跨度为22年。第二时段,1999年至2012年间,散布图基本呈现单调上升趋势;用1999年至2012年的数据,预测2013年至2020年间8年的储量值。这样可讨论在两种经济、技术环境背景下的中国石油储量可能的变化规律。

另外,为了使预测更加准确并可信,使用GM(1,1)、GM(2,1)模型预测实验,其结果无法通过检验。所以最终使用回归方法预测。

石油储量第一时段预测利用SPSS 19.0 软件,将表4-5 中的数据进行处理,得到不同回归模型的可决系数(R2)和拟合度结果状态值,包括线性、二次、三次和幂函数的回归模型。而三次回归的可决系数R2=0.780,其他模型的可决系数值远远小于该值。单因素方差分析时,F>F0.05(r-1,n-r)或p<0.05,表现出因素具有显著影响力特征。因此,中国石油储量1980年至1998年间的回归预测模型见公式(4—1)。

y=0.746x3-25.049x2+257.055x+1451.431(4—1)

而且, =3.29。

所以可以使用预测模型公式(4—1)进行中国石油储量的回归预测。预测结果见表4-7。

表4-7 中国石油储量1999-2020预测值 单位:106t

石油储量第二时段预测,依上步骤,出局处理后结果显示,三次回归的可决系数R2=0.915,其他模型的可决系数值都远小于该值。单因素方差分析时,F>F0.05(r-1,n-r)或p<0.05,也表现出因素具有显著影响力特征。因此,中国石油储量1999年至2012年间的回归预测模型见公式(4—2)。

y=0.452x3-7.414x2+42.734x+2033.524(4—2)

而且, =3.71。

所以可以使用预测模型公式(4—2)进行中国石油储量的回归预测。预测结果见表4-8。

表4-8 中国石油储量2013-2020预测值 单位:106t

比较2011-2020年间数据,显示两个模型预测的结果差别很大,这与预测的时间跨度有很大关系。一般情况下,回归预测方法预测3年内的变化趋势较为准确,8年内的具有一定的参考价值。所以,本次研究将使用第二时段的预测数据。

另外,两个时段的预测模型也可能代表两种不同的技术条件下的环境情况。第一种模型说明,如果石油勘查技术有所突破而使石油勘查成果显著,那么中国石油储量的变化走势趋近于该模型。第二种情况显示,如果中国石油勘查技术没有什么大的改变,与目前情况大致相当,则随着开采量的迅速上升储量的增加值变化不大。

2.天然气资源储量预测

将表4-6中的数据进行处理,得到不同回归模型的可决系数(R2)和拟合度结果状态值,包括二次、三次、复合函数和指数函数的回归模型。而三次回归的可决系数R2=0.890,其他模型的可决系数值小于该值。单因素方差分析时,F>F0.05(r-1,n-r)或p<0.05,表现出因素具有显著影响力特征。因此,中国天然气储量1980年至2012年间的回归预测模型见公式(4—3)。

y=0.0003x3-0.011x2+0.161x+0.394 (4—3)

而且, =2.9223。

所以可以使用预测模型公式(4—3)进行中国天然气储量的回归预测。预测结果见表4-9。

表4-9 中国天然气储量预测值统计 单位:1012m3

从预测结果可见,中国天然气储量到2015年可达近6×1012m3,2020年升至近10×1012m3。

(三)产量预测

1.石油资源生产量预测

将表4-5 中的年份作为自变量,产量作为因变量。利用SPSS 19.0 版本软件,处理储量数据,得到不同的回归模型的可决系数(R2)和拟合度结果状态值,包括线性、二次、三次、幂和复合等函数的回归模型。单因素方差分析,F>F0.05(r-1,n-r)或p<0.05,表现出因素具有显著的影响力。但综合拟合分析结果显示,线性回归模型拟合度最高。因此,中国石油生产量的线性回归预测模型见公式(4—4)。

y=3.068x+101.714 (4—4)

而且,F储量(1980—2012)= =1282.343>F0.05(1,31)储量(1980—2012)=4.1709。

所以可以使用预测模型公式(4—4)进行中国石油生产量的回归预测。预测结果见表4-10。

使用灰色预测方法,中国石油的生产量符合“灰因白果律”的灰色预测事件。本次预测的X(0)即为1980年的产量值,即 (1)=106.0;t从1取到33的整数。可得GM(1,1)预测模型公式(4—5)。

中国油气战略储备研究

检验计算,平均相对残差值为0.0048,小于0.05。

后验差检验计算结果显示C生产量=0.0365<0.35。

小误差概率检验计算 =0.9952>0.95。

则说明中国石油生产量的G M(1,1)模型公式(4—4)精度为一级。用此模型进行预测计算结果见表4-10。

表4-10 中国石油生产量预测值统计 单位:1010t

使用线性回归预测模型和G M(1,1)模型计算出中国石油生产量2013年以后8年间的变化趋势情况(表4-10)显示,历年的变化趋势水平线性回归预测小于灰色预测的增量值,但都是呈现稳步上升趋势。所以按照目前的开采技术等条件,到2015年中国石油生产量将达到(212.16~220.45)×106t,2020年会升至(227.50~243.51)×106t。

2.天然气资源生产量预测

依据以上的方法,将表4-6的数据处理后得到不同的回归模型的可决系数(R2)和拟合度结果状态值,包括二次、三次、复合函数和指数函数等的回归模型。其中三次回归预测的R2=0.992为最大。

单因素方差分析时,F>F0.05(r-1,n-r)或p<0.05,表现出因素具有显著的影响力。因此,中国天然气生产量的线性回归预测模型见公式(4—6)。

y=0.005x3-0.244x2+3.678x+3.875 (4—6)

而且, =2.8387。

所以,可以使用模型公式(4—6)进行预测。预测结果见表4-11。

表4-11 中国天然气生产量预测值统计 单位:109m3

结果显示,2015年中国的天然气生产量将达到约178×109m3,2020年可能会升至约2×109m3。

(四)进口量预测

利用SPSS 19.0软件,将表4-4中的数据进行处理,得到不同回归模型的可决系数(R2)和拟合度结果状态值,包括线性、二次、三次和幂函数的回归模型。单因素方差分析时,F>F0.05(r-1,n-r)或p<0.05,也表现出因素具有显著影响力特征。综合拟合分析结果显示,二次回归模型拟合度最高。因此,中国石油进口量的二次回归预测模型见公式(4—7)。

y=0.5482x2+4.1546x-0.8693 (4—7)

而且, =3.5219。

所以,可以使用预测模型公式(4—7)进行中国石油进口量预测。预测结果见表4-12。

表4-12 中国石油进口量预测值统计 单位:106t

预测结果显示,在目前的生产量水平和消费需求增长趋势下,中国石油进口量在2015年和2020年分别达到3.5×108t和5.1×108t左右。如果中国的能源消耗结构变化不大,新型能源开发利用速度不太快,那么中国的石油进口依存度将会长期处于一个高的水平。

油气储运知识

2017年四季度的时候,我们开过一个千人电话会议,当时是认为,会有一批千亿市值企业崛起,就是基于大炼化。现在回过头去看,我们已经看到了一批优秀的公司进入了千亿市值的行列。下一步的节奏,可能慢慢地,会迈入2000亿市值的门槛。我个人大致的一个判断是,万华应该是所有的化工企业中,率先站上并站稳2000亿市值的。可能在一到两年内,我相信,浙石化的控股股东荣盛石化,我觉得大概率也会站上2000亿市值。 确实来说,大型炼化装置,从我们17年的研究来看,发展中国家化工企业做大做强的一条比较快的路,就是全球化工市场上的十家,九家都有大型炼化装置。 这个说明,发展中国家的企业若要赶超发达国家,发展大型装置是必经之路。目前来看,在大型裂化装置方面,浙石化,我6月30日去了一趟,确实,二期计划和一期的相比,出现了比较明显的变化。这个明显的变化是什么呢?一期是2000万吨炼油,140万吨乙烯加400万吨PX,二期在和一期一模一样的情况下,另外又加了一套140万吨乙烯。我大致算了一下,整个化工品的收率,可能可以达到70%,除了原油直接做化工品,裂解制乙烯做化工品以外,应该说,在全球,这么高的化工品收率、这么大型的装置,是没有的。类似荣盛、浙石化这样一套的装置,放在全球,这么大的规模、这么高的化工品收率,应该说用“旗帜”来形容,我觉得是不为过的。这是在能源革命、新能源革命背景下发展的一条新路径。随着太阳能、储能、锂电池电动车这三个形成一个闭环后,尤其是现在两头逐步在成熟,卡就卡在储能这一端成本比较高,如果能发展起来,我觉得会发生一场能源革命。就是在原油、炼油、汽柴油、到内燃机这条产业链,可能会被刚才我说到的这条产业链所取代。这样来说,原油的角色,可能以前是70%是能源30%是材料,后面就会转变成30%是能源70%是材料,可能在未来十年内,或者十年到二十年以内会逐步地完成这个角色的转变。也就是说,要做一个大型的炼化装置,要在未来的行业发展趋势中获取先机的话,一定是要把自己从一个能源提供商变成一个材料提供商,这一点是符合发展规律的,这一点浙石化做的是相当不错的。

另外,在路演过程中也经常有人问我,大型炼化装置的壁垒在哪里?我说,大型炼化装置的壁垒,主要是在两个环节。技术没有壁垒,为什么技术没有壁垒呢?因为我们所有的技术都是来自专利上的授权,要么是国内专利商的要么是国外的。主要的壁垒在哪里呢?我认为一个是政策上的支持。像荣盛浙石化两期装置的整个投资大概要2000亿,自有资本大概接近540到550亿,这是很明显的资本密集型,商业银行还愿意竞争剩下的部分,这是资金上的支持。 最关键的壁垒在哪里呢?是政策上的,允不允许你做,这才是一个最大的壁垒。 我看过台塑王永庆的回忆录,一九七几年的时候,台塑从下往上做,做到一定程度的时候,他就有一个想法,我要做一个大型的炼化装置。但是当时国民党不允许,因为当时台湾是由类似中石油、中石化的国有企业在经营,不允许你经营。一直过了20年,1994年,台湾国民党放开了,给台塑石化一张允许进入大型炼化装置的许可,至此以后,就开始建设,90年代开始建设,完全建成是在07年,2500万吨炼油,300万吨乙烯。我们国家也是这样,会涌现出这样一批优秀的企业,能到千亿的市值,本质上,还是国家给了政策上的支持,这个是我觉得最关键的。没有政策上的支持,允许他们进入并且允许他们做大做强,就没有这些企业什么事情了,这是第一个大型炼化装置的壁垒——政策。 第二个比较关键的,是本土要有足够大的市场。 为什么?像国内,大型炼化装置肯定不止一两套,已经很多套了。因为国内的市场足够大,建一套大型的炼化装置,一部分外销,一大部分内销,相当于是能进能退,保证产品能够基本上全部消化掉。整个亚太区域,以前是日本,后面是韩国,接下去是台湾,他们有大型炼化装置,本土有市场是一个前提。在这个情况下,大型炼化装置能够脱颖而出,是借助于本土的市场。所以大型炼化装置的壁垒,我的理解,第一个是政策,第二个是本土有一个相对比较庞大的市场,可以消化、容纳产品。浙石化,现在搞了2000万吨,再搞4000万吨,后面甚至还有三期,6000万吨等等,都可行。这些可行的基础,都是建立在我刚才说的两大基础上,这是我对大型炼化装置壁垒的认识。另外,就后面发展来看,我记得在17年大型炼化会议上也提出过一点,1000亿市值仅仅是这些公司起步的一个阶段,可以预期的是,这些公司可以动用的自由现金流将在上百亿以上,为中国化工企业赶上全球先进的化工企业打下了基础,因为只有他们才可以动用大规模的资金去做研发投入。譬如像韩国知名的炼化公司LG化学,它就是炼化起家,逐渐在电子、芯片、半导体方面有所成就。所以我认为,现在第一步,大型炼化装置,尤其是浙石化一期二期设计上,荣盛也好、桐昆也好,上一个台阶,接下来,这批大型炼化装置公司,谁会走的越来越好?一定是在现有基础上,进一步跨越,往新型材料上走,往上走,就是我觉得这些大型公司再上一个台阶最关键的驱动因素。

1、 历史 性机遇下的民营大炼化龙头

1.1、民营大炼化的 历史 性机遇

民营大炼化的起源来自“十三五”期间,国家在千吨级炼厂上对民营企业放开。2016-2018年,国内炼油化工行业迎来一波景气周期,民营企业对炼化行业投资热情高涨。恰逢2016年后民营聚酯龙头企业盈利趋势向上,积累了向上游做一体化延伸的资金,在这一波炼化投资高峰中,他们冲在了最前列。

“十三五”期间,国家制定了《石化产业规划布局方案》,希望通过更为合理的规划,扭转国内石化项目分布分散、竞争力不强的格局。规划的七大石化基地均位于沿海经济发展水平高、港口条件优良的的区域:包括长三角地区的上海漕泾、浙江宁波和江苏连云港基地;泛珠三角的广东惠州和福建古雷基地;环渤海的大连长兴岛和河北曹妃甸基地。

这一轮民营企业的典型代表项目,无一例外占据了七大石化基地最有利的区域,典型的项目包括恒力石化2000万吨大连长兴岛项目,浙石化4000万吨舟山项目和盛虹石化1600万吨连云港项目。

2020年,恒力、浙石化和恒逸文莱项目一期均已经全面投产,开始为上市公司贡献利润。2020Q1,在油价下跌和疫情的双重影响下,国营炼厂普遍亏损,而民营大炼化仍有盈利,形成鲜明对比。民营大炼化证明了比存量炼化项目成本更低,分化在全年会体现得更为明显。

然而,国内的炼油行业仍处于深度过剩状态,2019年国内炼油能力8.60亿吨,加工原油6.49亿吨,开工率只有75.5%,按照90%开工率估算国内炼油能力过剩约20%。国内的炼化企业不得不面临有6000万吨以上的成品油需要出口的压力。而下游产品的过剩正在从成品油蔓延到烯烃、芳烃等化工品。

在这样的背景下,我们预计“十四五”期间,国家对新建炼化产能的审批将更为严格。此前抓住时机的民营大炼化企业,占据了沿海区位优势,项目采用了最新一代的炼化技术,是极具竞争力和稀缺性的。而浙石化,未来一年将从2000万吨增加至4000万吨规模,远期还有望增加三期项目到6000万吨,是这一轮民营炼厂扩张中占据资源最多的项目。

1.2、最具政策红利的民营大炼化企业

中国(浙江)自由贸易试验区,是2017年国务院在浙江舟山群岛新区设立的区域性自由贸易园区,将重点开展以油品为核心的大宗商品中转、加工贸易、保税燃料油供应、装备制造、航空制造、国际海事服务、国际贸易和保税加工等业务。

2020年3月,国务院批复《关于支持中国(浙江)自由贸易试验区油气全产业链开放发展若干措施》,指出支持浙江自贸试验区适度开展成品油出口业务,允许浙江自贸试验区内现有符合条件的炼化一体化企业开展副产的成品油非国营贸易出口先行先试,酌情按年度安排出口数量。

国内的成品油出口目前实行配额制,2019年只有中石化、中石油、中海油和中化等国营企业获得配额。由于地方和民营炼厂在成品油分销网络的建设上大幅落后于中石化和中石油等国营企业,成品油出口环节的限制,给地方和民营炼厂造成了巨大的经营压力。2020年4月,浙石化已顺利取得100万吨低硫船用燃料油出口配额,预期后续在汽柴油的出口配额上也会有所放开。公司在7月又获得成品油非国营贸易出口资质,为浙石化成品油的灵活安排生产和出口销售铺平了道路。

1.3、浙石化将形成民企控股,国企和外企三方合资的股权结构

目前浙石化的股权结构为荣盛石化(民企)控股51%,桐昆股份(民企)20%,巨化集团(国企)20%,舟山海投(国企)9%。舟山海投的股份拟转让给沙特阿美(外企),未来将构成民企控股,国企和外企三方合资的股权结构,有利于融合多方资源。

主要控股和参股方,荣盛石化和桐昆股份拥有庞大的PTA和聚酯产业链,可以和浙石化形成从油到丝的全产业链协同;巨化股份是浙江省内的大型化工国企,代表了浙江省国资的支持;沙特阿美是全球超级原油和炼化巨头,可以为公司带来原油进口、炼化技术、成品油和化工品销售贸易上的协同。

在成品油销售环节,浙能集团和浙石化共同成立浙江省石油股份有限公司,浙能控股60%,浙石化40%。浙能集团是浙江省大型国营电力、油气和能源服务巨头。合资公司将在浙江建设几百个加油站,作为浙石化成品油的一条重要销售渠道。

在对原油到化工品的技术发展上,沙特阿美和沙特基础工业的第三代原油制化学品技术,实现接近50%的从原油到化学品直接转化率。第四代技术是沙特阿美和CB&I、CLG联合开发的“热原油制化学品”技术,可通过研发加氢裂化技术将原油直接生产化工产品的转化率提高至70%-80%。

2、浙石化将是国内最具竞争力的一体化炼厂

相比国内的存量炼厂,浙石化整体规划设计,装置规模大,技术领先;位于华东核心位置,区位优势显著。其主要股东可以就近消化PX和乙二醇。在政策支持方面,浙江省政府配套建设公用设施,给予800万吨规模煤指标,配套构建成品油零售网络。浙石化4000万吨建成后,将成为国内最具竞争力的炼厂。

2.1、整体设计规划,烯烃芳烃比例高,规模优势显著

浙石化4000万吨炼化一体化项目是整体规划设计的,一期围绕最大化芳烃产能为中心,并配套大型乙烯装置充分利用轻烃资源;二期方案最大限度生产乙烯及下游产品。4套1000万吨常减压装置加工原油适应性强,其中一期设计可加工高硫中质和高硫高酸原油,可按照市场原油的供应情况加工低价的“机会原油”。

浙石化初期设计总规模为4000万吨/年炼油+1040万吨/年芳烃(其中800万吨PX)+280万吨/乙烯。其中一期建成规模为2000万吨/炼油+520万吨/芳烃(其中400万吨PX)+140万吨/乙烯,即成品油收率为42%。一期重油加工选用固定床渣油加氢+重油催化裂化+焦化组合模式;二期将采用浆态床渣油加氢方案。一期化工部分乙烯下游产品主要为EO/EG、聚乙烯和苯乙烯;丙烯下游主要为丙烯腈,聚丙烯和苯酚丙酮,并配套60万吨丙烷脱氢装置充分利用炼厂副产的LPG多产丙烯。公用工程方面采用海水淡化、粉煤锅炉和煤焦制气,制氢成本较低。

浙石化二期在总结一期经验的基础上,计划增加一套乙烯,并扩大芳烃的产量,计划将整体调整为4000万吨/年炼油+880万吨/年PX+420万吨/年乙烯,化工品比例进一步提升。按照二期乙烯和芳烃产品的比例,预计浙石化一期也还有进一步优化增加化工品的空间。

2.2、下游一体化配套优势

浙石化的主要股东荣盛石化,其参控股的逸盛系,拥有1350万吨PTA产能,远期将达到2000万吨。荣盛石化还拥有255万吨聚酯产能,并在继续增加。另一股东桐昆股份拥有400万吨PTA产能,远期将达到900万吨;拥有0万吨聚酯产能,远期将达到1000万吨。两大股东完全可以消化其生产PX和MEG产能。其他聚烯烃等化工品方面,长三角地区是国内最活跃的化工品交易和应用市场。

此外荣盛石化在宁波中金还有200万吨芳烃装置(含160万吨PX),采用燃料油和石脑油进料路线,如果上游炼油端可以放开,中金石化也可以扩展成一套炼化一体化装置。

下游方面,浙石化采用合作的模式,进一步深挖化工品深度加工,提升产品的附加值。

浙石化和德美化工成立德荣化工(50:50),对浙石化项目50万吨裂解C5和48万吨裂解C9进行深加工。将建设50万吨/年裂解碳五分离装置,20万吨/年碳五加氢装置,48万吨/年裂解碳九分离加氢装置,7万吨/年间戊二烯树脂装置,10万吨/年DCPD树脂加氢装置和6万吨/年碳九冷聚树脂装置。浙石化和BP计划以50:50的比例建设年产100万吨的醋酸厂,将采用BP的CATIVA XL技术。

3、全球首屈一指的炼化一体化基地

3.1、世界超大型炼厂情况比较

4000万吨规模的炼油产能,可以进入世界前五行列,到6000万吨可以名列全球前二。全球范围内,炼油产能聚集的区域主要是美国墨西哥湾、韩国蔚山、印度贾姆纳格尔、新加坡裕廊岛和沙特延布等。其特点是,既拥有优越的港口条件,又面向腹地广阔的消费市场。同样的,我国杭州湾也有望形成一个1亿吨以上的炼化产能聚集区,辐射长三角区域,该区域已包括浙石化、镇海炼化、上海石化、大榭石化和高桥石化的搬迁。

排名

公司

炼厂所在地

炼油能力 (万吨/年)

1

印度信诚石油公司

印度贾姆纳格尔

6200

2

委内瑞拉帕拉瓜纳炼制中心

委内瑞拉胡迪瓦纳

4830

3

韩国SK公司

韩国蔚山

4200

4

阿联酋阿布扎比炼油公司

鲁维斯

4085

5

GS-加德士公司

韩国丽水

3925

6

S-Oil公司

韩国昂山

3345

7

沙特阿美公司

美国得克萨斯州波特阿瑟

3015

8

埃克森美孚公司

新加坡亚逸查湾裕廊岛

2960

9

美国马拉松石油公司

美国得克萨斯州Galveston港

2855

10

埃克森美孚公司

美国得克萨斯州贝敦

2800

11

美国马拉松石油公司

美国路易斯安那州Garville

2780

12

沙特阿美公司

沙特拉斯塔努拉角

2750

13

台塑石化股份有限公司

中国台湾麦寮

2700

14

埃克森美股公司

美国路易斯安纳州巴吞鲁日

2510

15

科威特国家石油公司

科威特艾哈迈迪港

2330

16

壳牌东方石油公司

新加坡武公岛

2310

17

中国石化股份镇海炼化公司

中国宁波镇海

2300

在全球这些规模名列前茅的项目中,委内瑞拉和阿联酋是因为原油产地区域而规划的炼厂,以生产燃料为主。委内瑞拉帕拉瓜纳炼制中心的大炼厂Cardon和Amuay最初都是由1950年左右的300万吨/年以内的炼厂发展而来,到现在的4830万吨/年规模,主要目的是将委内瑞拉的重质原油转化为燃料。但因为委内瑞拉的经济危机,使得投资和原料经常不足,炼厂负荷常年得不到保障。阿联酋鲁维斯炼油厂起步于600万吨/年的装置,2000年扩建到1500万吨/年,2015年扩至4085万吨/年,也以生产燃料为主。

韩国既不是中东那样的原料地,也不具备像中国、印度那样的消费市场,其炼厂以出口为导向。韩国大规模建炼厂是在1990年以后,以规模效应著称,其炼厂平均规模超过2000万吨/年。由于靠近中国市场,2008年后中国经济的高速发展为韩国炼厂带来了巨大的市场红利,例如08年后中国每年从韩国进口大量的PX。但是,随着国内这一批千吨级炼厂的落成,失去消费地和装置先进性优势的韩国炼厂正在逐步丧失竞争力。

3.2、印度信诚实业:高速发展的市场化民营炼厂

印度是全球第三大石油消费国,石油需求持续增长。由于印度炼油业对私人资本开放,私营炼厂得以蓬勃发展,目前已占印度炼油能力的40%。印度信诚石油公司是印度最大的民营炼化巨头,在贾姆纳格尔的炼厂拥有140万桶/天的原油处理能力,对应7000万吨/年,是全球最大的炼厂,复杂系数为21.1。同时,公司在2018年成功投产了150万吨美国乙烷进料的乙烷裂解装置,增加乙烯的产能。

印度信诚实业集团是一个横跨能源化工、零售和电信业的超级大集团,是印度市值最大的公司。炼化板块目前仍是其盈利最好的板块,是其发展的基石,帮助其培育了快速增长的电信业。

近年来,为解决其高企的负债和保持增长,印度信诚也展开了和国际巨头的合作。沙特阿美计划斥资150亿美元收购印度信诚炼化板块20%的股权,其对印度信诚炼化板块的估值达到750亿美元。作为合作,印度信诚将从沙特阿美采购50万桶/天的原油。下游分销方面,印度信诚和BP公司合资(51:49)的成品油零售公司,目前在印度有约1400座加油站,估值20亿美元,计划未来5年内将加油站增加到5500座。

3.3、台塑石化:浙石化的“简配版本”

台塑石化拥有2700万吨炼化产能和300万吨乙烯产能,其主要装置在1998年、1999年和2007年投产。台塑石化主要由3套900万吨常减压装置、2套400万吨重油加氢装置、2套420万吨渣油催化装置,和3套分别为70万吨、103.5万吨和120万吨的乙烯装置组成。其芳烃组分交由台化芳烃厂加工,烯烃组分也被交由台塑集团其他子公司加工,所以台塑石化相当于70%比例浙石化产能的“简配版”。

台塑石化在原油价格较为稳定的情况下,净利润大致在50-120亿人民币之间波动,市值在2009年炼厂建设完成后基本在1500-2000亿人民币之间波动。

估值方面,台塑石化近10年平均ROE水平在11.5%,而平均PB为2.5倍,PE大致在20倍附近波动。

3.4、浙石化的国际比较

从炼厂产能规划上来看,浙石化二期建成后将远超台塑石化,三期建成后将达到印度信诚炼化板块的规模,并且在化工品方面产能更大,向下游延伸更深。从产业链配套来看,浙石化在下游聚酯产业链的配套和产业集群上也优于台塑石化和印度信诚。

从过去10年亚洲炼厂PB-ROE情况来看,日本炼厂的ROE水平最低,韩国炼厂次之,印度和中国的炼厂ROE水平较高。从我们对民营大炼化各个板块的理解来看,过去聚酯和PTA板块的ROE水平大致在10%左右,而民营大炼化项目的ROE水平有望提升至20%以上。民营大炼化公司的PB水平应该高于亚洲其他炼厂。

一、油气储运中常见问题及原因

1、火灾隐患

由于石油及天然气的主要成分是烃类碳氢化合物,具有易燃、易爆、易聚集静电、易中毒等特性,而油气储运过程中是在特定的条件下进行,特别是输油管道,加热加压是管道运输的特点,故具有极大的火灾及爆炸危险性。一旦发生事故,可能造成巨大的经济损失和人员伤亡,并带来恶劣的社会影响。主要原因主要有:(1)设备故障带来的危害。油气储运设备设计的不合理、工艺缺陷、管线的腐蚀、操作压力的波动、机械振动引起的设备疲劳性损坏以及高温高压等压力容器的破损,易引起泄漏及爆炸。(2)防静电措施不到位。油气储运过程中,油气在管道和设备内流动会因摩擦而产生静电,如果静电不能及时导除,造成电荷积累,导致火花放电,就会引起火灾爆炸事故。(3)不防爆设备及电器带来的危害。工艺设备及电器线路如果未按规定选用防爆型或未经防爆处理,泄漏的可燃液体、气体遇机械摩擦火花或电气火花极易发生火灾爆炸事故。(4)违章动火作业。包括违章指挥,动火审批不严,在不具备动火的条件下贸然审批动火;盲目动火。有的职工不熟悉动火管理规定,或存在侥幸心理,不办理动火手续,有的职工本身不具备动火资格,忽视动火管理规定,贸然动火酿成火灾;现场监护不力,流于形式。

2、油气蒸发严重

目前,从油田→炼油厂→用户的周转环节繁杂,油气损耗量及带来的经济损失十分惊人。在石化、石油企业,如炼油厂储运系统、油库、加油站等油品装卸操作频繁的工作环节,汽油等轻质油品中易挥发的有机组分会大量汽化逸出。按全国目前原油的年使用量2. 5×108t估算,全国原油和成品油的总损耗量将达到7. 5×106t/a以上,相当于一个大油田和炼油厂的采炼量,价值3×1010RMB以上。油品蒸发损耗的主要物质是轻组分,因此,油品蒸发不仅造成数量的损失,还将引起质量的下降。除此之外,由于散发到空气中的油气具有易燃易爆的特性,超过一定浓度遇到火源即可发生爆炸。石油储运过程中的装卸站台和加油站向空气中排放的油气具有一定的毒性,会引起皮肤、内脏和神经系统的疾病;另外油气(烃类物质)与空气中氮氧化物在紫外线的作用下发生反应生成臭氧,为光化学烟雾的形成创造了条件。

3、管道腐蚀

很多输油管道在湿硫化氢环境下受到严重腐蚀并开裂,如应力腐蚀开裂(SCC)、硫化物应力腐蚀开裂(SSCC)、氢致开裂(HIC)、应力诱导的氢致开裂(SOHIC)等。造成管道腐蚀的原因通常有四种:(1)材质因素。以HIC为例,材料中包含贝氏体或者马氏体的“硬质”带对HIC十分敏感。如果材料夹杂物偏析区硬度控制在300HV以下,就能够很好的消除材料对HIC的敏感性。2、埋地管道所处的环境。埋地管道所处的环境是引起腐蚀的外因,这些因素包括土壤类型、土壤电阻率、土壤含水量(湿度)、pH值、硫化物含量、氧化还原电位、杂散电流及干扰电流、微生物、植物根系等。3、应力水平。有很多实验表明,如果材料所承受的应力超过其屈服应力的30%以上时,材料就可能发生SOHIC破坏。但这样的应力水平,在焊接构件的焊缝周围区域以及SSCC裂纹或者其它类似于裂纹的缺陷内都有可能出现。4、设计制造。一些学者参照NACE标准(对于介质为气体,设计压力,<448 kPa;对于介质为多相系统,设计压力<1 551 kPa)进行容器设计,认为可以避免SSCC或HIC发生的可能。但是实际上,这个标准的制定来源于实验室环境(空气中)。而且,酸性环境与水相的化学成分、pH值以及硫化氢分压等因素有关。

二、防止储运过程中问题的对策

1、油气储运过程的防火准备

(1)定期对设备维护保养。针对各种设备的特性严格按保养规程进行维护,工艺流程操作前做好工作危害分析,控制操作风险。(2)做好防火设计。设备泄漏等往往起源于设计阶段,因此抓好防火设计十分重要。首先是设备的设计、选型、选材、布置及安装均应符合国家规范和标准。根据不同工艺过程的特点,选用相应的耐压、耐高温或耐腐蚀的材质,按规定进行制造和安装。其次是新建、改建、扩建生产装置布局,单元设备布置,防火安全设施的设计和实施应遵循有关规范,做好严格的防火审核工作,充分考虑防火分隔、通风、防爆泄压、消防设施等因素。同时对设备、电气的防爆要求严格把关,从而消除先天性火灾隐患。3、落实动火作业措施。拆卸禁火区内需要动火的设备、管道及其附件,移至安全的地方去动火,将需要动火的设备、管道及其附件和相关的运行系统做有效地隔离,如在管道上加堵盲板或拆掉一节管子等,阻隔易燃易爆的物料和介质进入动火作业点。动火前应把动火点周围的易燃易爆物品转移至安全地方,现场应打扫干净。经检查确认无误后,开具“用火作业许可证”,落实好监护责任人。要在动火前和动火期间对动火区域内易燃易爆气体浓度进行分析,避免动火过程中发生火灾、爆炸事故。

2、油气储运中的油气挥发

首先,改造固定顶油罐。当前,很多石油企业依然用固定顶油罐来储存汽油和煤油,为了防止油气挥发,减少油品储存过程中油气污染,需要将这些汽油和煤油储罐改装成内、外浮顶储罐,并经常检查,确保浮顶密封和附件良好。可以增强油罐的安全可靠性,减少油气污染,浮顶罐的蒸发损耗可比固定顶罐降低85%左右。而且还可以产生可观的经济效益。2、油气回收装置,治理油品灌装过程中的油气挥发,最根本的手段是采取油气回收措施,回收排放出的烃类气体。采用油气回收措施就是在油品灌装集中的地点,设置油气回收装置,将灌装过程中产生的油气回收,通过装置恢复成液态,重新送入储罐。这样不仅可以大幅度降低烃类气体排放量,而且具有明显的经济效益。油气回收方法可分为吸收法、吸附法、冷凝法及薄膜选择渗透回收法等。总之,加油站采用油气管道系统方案、储油罐中固定顶罐较多的油库和炼油厂采用油气管道与专用设备结合的方案较为合理,即可在减少投资情况下达到一定效果,其他情况则应采用专用设备方案,效果较好,但投资较大。

3、管道的防腐蚀处理

(1)加强钢管材料要求。管道发生应力腐蚀开裂主要是由剥离或阴极剥离造成的,要完全控制和预防压力容器及管道中的与氢相关的腐蚀开裂,可能性非常小。为此,在材料的制造过程中,尽量控制和改善夹杂物的数量与形貌,降低含硫量与含氢量,涂敷前的钢管表面必须进行抛丸或喷砂处理,以达到标准要求的洁净度和锚纹深度,确保底漆粘结牢固。(2)把好现场补口质量。补口材料与管体防腐覆盖层有较好的相容性;补口接合部应严密粘牢,必要时可做严密性试验;必须认真处理补口处的钢管表面,达到管体表面洁净度的要求。(3)合理选择管材壁厚度。首先要防止储运过程与投运中管道的局部屈曲失稳;其次,要考虑裂纹扩展时效,防止开裂破坏。厚壁管比薄壁管有利于抗应力腐蚀开裂。因此在设计时不妨适当降低管材强度,增加管壁厚度。(4)固定式与移动式防腐作业线相结合工厂固定式防腐作业生产,由于施工环境好,可提高防腐管的质量,但对于需要长途运输的管材,防腐覆盖层易损伤,而现场修补也很难达到满意的效果,故建立防腐作业线应考虑固定与移动相结合,以满足工程现实的需要。

三、结语

石油是不可再生的自然资源,油气储运作业环境复杂,因此各个炼油厂和油库、加油站应必须着手在油品储运过程中采取切实可行的措施减少蒸发损耗,避免强制实施油气回收时影响生产经营。将火灾防患于未然,对储运管道加强管理。但是由于油气储运过程的复杂性,很多问题还有待进一步解决,如油气回收技术等等。目前我国还处于较低的发展阶段,如何将一些技术有机的结合起来,还需要以后的不断探索。